Skip to main content
Log in

ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Patients with type 2 diabetes (T2DM) are usually obese and concurrent obesity results into activation of the renin–angiotensin-system (RAS) which is a risk factor for diabetic nephropathy (DN). Gene–gene interaction between acetyl-coenzymeA carboxylase beta (ACACβ) gene, which is involved in fatty acid metabolism and angiotensin II receptors (AGTR1) gene, which mediates RAS proteins actions on renal tissue, polymorphism with DN have not been studied earlier. The present study was designed with the aim to examine the association of an ACACβ (rs2268388) and AGTR1 (rs5186) gene polymorphism with the risk of DN in Asian Indians. 1,158 patients with T2DM belonging to two independently ascertained North Indian and one South Indian cohorts were genotyped for ACACβ (rs2268388) and AGTR1 (rs5186) polymorphism using real time PCR-based Taq-man assay and PCR–RFLP assays. In all the three cohorts, a significantly higher frequency of T allele and TT genotypes of ACACβ and C allele and CC genotypes of AGTR1 were found in patients with DN as compared to patients without nephropathy. Further, T allele of ACACβ and C allele of AGTR1 were found to be significantly associated with proteinuria, a hallmark of DN. We also found significant epistatic interactions between these two genes. TT genotypes of ACACβ gene and CC genotype of AGTR1 gene confers the risk of DN and both genes had significant epistatic interaction in Asian Indian patients with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritz E, Rychlik I, Locatelli F, Halimi S (1999) End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 34:795–808

    Article  PubMed  CAS  Google Scholar 

  2. Vijay V, Snehalatha C, Shina K, Lalitha S, Ramachandran A (1999) Familial aggregation of diabetic kidney disease in type 2 diabetes in south India. Diabetes Res Clin Pract 43:167–171

    Article  PubMed  CAS  Google Scholar 

  3. Schmidt S, Ritz E (1997) Genetics of the renin–angiotensin system and renal disease: a progress report. Curr Opin Nephrol Hypertens 6:146–151

    Article  PubMed  CAS  Google Scholar 

  4. Remuzzi A, Puntorieri S, Alfano M, Macconi D, Abbate M, Bertani T et al (1992) Pathophysiologic implications of proteinuria in a rat model of progressive glomerular injury. Lab Invest 67:572–579

    PubMed  CAS  Google Scholar 

  5. Bochud M, Nussberger J, Bovet P, Maillard MR, Elston RC, Paccaud F et al (2006) Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48(2):239–245

    Article  PubMed  CAS  Google Scholar 

  6. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS (2006) Body mass index and risk for end-stage renal disease. Ann Intern Med 144(1):21–28

    PubMed  Google Scholar 

  7. Abu-Elheiga L, Matzuk MM, Abo-Hashema KA, Wakil SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616

    Article  PubMed  CAS  Google Scholar 

  8. Fradin S, Goulet-Salmon B, Chantepie M, Grandhomme F, Morello R, Jauzac P et al (2002) Relationship between polymorphisms in the renin–angiotensin system and nephropathy in type 2 diabetic patients. Diabetes Metab 28(1):27–32

    PubMed  CAS  Google Scholar 

  9. Osawa N, Koya D, Araki S, Uzu T, Tsunoda T, Kashiwagi A et al (2007) Combinational effect of genes for the renin–angiotensin system in conferring susceptibility to diabetic nephropathy. J Hum Genet 52:143–151

    Article  PubMed  CAS  Google Scholar 

  10. Tomino Y, Makita Y, Shike T, Gohda T, Haneda M, Kikkawa R (1999) Relationship between polymorphism in the angiotensinogen, angiotensin-converting enzyme or angiotensin II receptor and renal progression in Japanese NIDDM patients. Nephron 82:139–144

    Article  PubMed  CAS  Google Scholar 

  11. Buraczynska M, Ksiazek P, Drop A, Zaluska W, Spasiewicz D, Ksiazek A (2006) Genetic polymorphisms of the renin–angiotensin system in end-stage renal disease. Nephrol Dial Transplant 21:979–983

    Article  PubMed  CAS  Google Scholar 

  12. Chang HR, Cheng CH, Shu KH, Chen CH, Lian JD, Wu MY (2003) Study of the polymorphism of angiotensinogen, anigiotensin-converting enzyme and angiotensin receptor in type II diabetes with end-stage renal disease in Taiwan. J Chin Med Assoc 66(1):51–56

    PubMed  Google Scholar 

  13. Lin J, Hu FB, Qi L, Curhan GC (2009) Genetic polymorphisms of angiotensin-2 type 1 receptor and angiotensinogen and risk of renal dysfunction and coronary heart disease in type 2 diabetes mellitus. BMC Nephrol 10:9

    Article  PubMed  Google Scholar 

  14. Ahluwalia TS, Ahuja M, Rai TS, Kohli HS, Bhansali A, Sud K, Khullar M (2009) ACE variants interact with the RAS pathway to confer risk and protection against type 2 diabetic nephropathy. DNA Cell Biol 28:141–150

    Article  PubMed  CAS  Google Scholar 

  15. Prasad P, Tiwari AK, Prasanna KM, Ammini AC, Gupta A (2006) Chronic renal insufficiency among Asian Indians with type 2 diabetes: I. Role of RAAS gene polymorphisms. BMC Med Genet 7:1–9

    Article  Google Scholar 

  16. Maeda S, Kobayashi MA, Araki S, Babazono T, Freedman BI et al (2010) A single nucleotide polymorphism within the acetyl-coenzyme A carboxylase beta gene is associated with proteinuria in patients with type 2 diabetes. PLoS Genet 6:e1000842

    Article  PubMed  Google Scholar 

  17. Tang SC, Leung VT, Chan LY, Wong SS, Chu DW, Leung JC et al (2010) The acetyl-coenzyme A carboxylase beta (ACACB) gene is associated with nephropathy in Chinese patients with type 2 diabetes. Nephrol Dial Transplant 25:3931–3934

    Article  PubMed  CAS  Google Scholar 

  18. Rozen S, Helen J, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  19. http://www.genes.org.uk/software/hardy-weinberg.shtml. Accessed 17 Feb 2012

  20. http://www.multifactordimensionalityreduction.org. Accessed 20 Feb 2012

  21. Ritchie M, Hahn L, Roodi N, Bailey R, Dupont W, Parl F et al (2001) Multifactor-domensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  PubMed  CAS  Google Scholar 

  22. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P et al (2004) Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 65:30–39

    Article  PubMed  CAS  Google Scholar 

  23. Pereira LG, Arnoni CP, Maquigussa E, Cristovam PC, Dreyfuss J, Boim MA (2012) (Pro)renin receptor: another member of the system controlled by angiotensin II? J Renin Angiotensin Aldosterone Syst 13(1):1–10

    Article  PubMed  CAS  Google Scholar 

  24. Tadashi K, Shigeyuki W, Shinichi M, Makoto M, Chikako A, Yasukazu M et al (2006) Tissue gene expression of renin–angiotensin system in human type 2 diabetic nephropathy. Diabetes Care 29:848–852

    Article  Google Scholar 

  25. Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E et al (1994) Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension 24(1):63–69

    Article  PubMed  CAS  Google Scholar 

  26. Miller JA, Thai K, Scholey JW (1999) Angiotensin II type 1 receptor gene polymorphism predicts response to losartan and angiotensin II. Kidney Int 56:173–180

    Google Scholar 

  27. Yoshida H, Kuriyama S, Atsumi Y, Tomonari H, Mitarai T, Hamaguchi A et al (1996) Angiotensin I converting enzyme gene polymorphism in non-insulin dependent diabetes mellitus. Kidney Int 50:657–664

    Article  PubMed  CAS  Google Scholar 

  28. Ruggenenti P, Bettinaglio P, Pinares F, Remuzzi G (2008) Angiotensin converting enzyme insertion = deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin J Am Soc Nephrol 3(5):511–525

    Article  Google Scholar 

  29. Ding W, Wang F, Fang Q, Zhang M, Chen J, Gu Y (2012) Association between two genetic polymorphisms of the renin–angiotensin-aldosterone system and diabetic nephropathy: a meta-analysis. Mol Biol Rep 39:1293–1303

    Article  PubMed  CAS  Google Scholar 

  30. Wahba IM, Mak RH (2007) Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol 2:550–562

    Article  PubMed  CAS  Google Scholar 

  31. Giacchetti G, Faloia E, Mariniello B, Sardu C, Gatti C, Camilloni MA et al (2002) Overexpression of the renin–angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens 15:381–388

    Article  PubMed  CAS  Google Scholar 

  32. Bagby SP (2004) Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J Am Soc Nephrol 15:2775–2791

    Article  PubMed  Google Scholar 

  33. Nishida Y, Yorioka N, Oda H, Yamakido M (1997) Effect of lipoproteins on cultured human mesangial cells. Am J Kidney Dis 29:919–930

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi MA, Watada H, Kawamori R, Maeda S (2010) Overexpression of acetyl-coenzyme A carboxylase beta increase proinflammatory cytokines in cultured human renal proximal tubular cells. Clin Exp Nephrol 14:315–324

    Article  PubMed  CAS  Google Scholar 

  35. Riancho JA, Vázquez L, García-Pérez MA, Sainz J, Olmos JM, Hernández JL et al (2011) Association of ACACB polymorphisms with obesity and diabetes. Mol Genet Metab 104(4):670–676

    Article  PubMed  CAS  Google Scholar 

  36. Wacholder S, Chanock M, Garcia-Closas L, El Ghormli N (2004) Rothman assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  37. Bird TD, Jarvik GP, Wood NW (2001) Genetic association studies. Neurology 57(7):1153–1154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The part of this study was funded by Research Society for the Study of Diabetes in India (RSSDI, Grant No. 1228 to VNS). Authors are thankful to study participants and acknowledge the help rendered by Dr. Sanjay Bhadada, Dr. Pinaki Dutta, Dr. Rama Walia, Dr. Sonika, Dr. Anupam, Mr. Ravinder, and Mr. Sunil.

Conflict of interest

No competing interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Bhansali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, V.N., Cheema, B.S., Sharma, R. et al. ACACβ gene (rs2268388) and AGTR1 gene (rs5186) polymorphism and the risk of nephropathy in Asian Indian patients with type 2 diabetes. Mol Cell Biochem 372, 191–198 (2013). https://doi.org/10.1007/s11010-012-1460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1460-2

Keywords

Navigation