Skip to main content
Log in

Protein kinase CK2 regulates redox homeostasis through NF-κB and Bcl-xL in cardiomyoblasts

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxygen consumption is particularly elevated in cardiac cells as they are equipped with a large number of mitochondria and high levels of respiratory chain components. Consequently, production of reactive oxygen species (ROS) is tightly controlled as an imbalance in redox reactions can lead to irreversible cellular damage. siRNA-mediated down-regulation of protein kinase CK2 has been implicated in the accumulation of ROS in cells. The present study was undertaken in order to investigate the role of CK2 in redox homeostasis in cardiomyoblasts. We found that inhibition or silencing of CK2 causes elevated levels of ROS, notably superoxide radical, and this is accompanied by suppression of NF-κB transcriptional activity and mitochondrial dysfunction. We show that CK2 regulates the expression of manganese superoxide dismutase, the enzyme catalyzing the dismutation of superoxide, in cancer cells but not in cardiomyoblasts. Furthermore, we report evidence that impaired expression of CK2 results in destabilization of the Bcl-2 mammalian homolog Bcl-xL, which is known to stabilize the mitochondrial membrane potential, through a mechanism involving disruption of the chaperone function of heat shock protein 90. Analysis of differential mRNA expression related to oxidative stress revealed that CK2 silencing caused a statistically significant deregulation of four genes associated with the oxidative damage, i.e., Fmo2, Ptgs1, Dhcr24, and Ptgs2. Overall, the results reported here are consistent with the notion that CK2 plays a role in conferring protection against oxidative stress by positively regulating pro-survival signaling molecules and the protein folding machinery in cardiomyoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13. doi:10.1042/bj2840001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taverne YJHJ, Bogers AJJC, Duncker DJ, Merkus D (2013) Reactive oxygen species and the cardiovascular system. Oxid Med Cell Longev. doi:10.1155/2013/862423

    PubMed  PubMed Central  Google Scholar 

  3. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344. doi:10.1113/jphysiol.2003.049478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castaldo SA, Freitas JR, Conchinha NV, Madureira PA (2016) The tumorigenic roles of the cellular REDOX regulatory systems. Oxid Med Cell Longev 2016:1–17. doi:10.1155/2016/8413032

    Article  Google Scholar 

  5. Truong TH, Carroll KS (2013) Redox regulation of protein kinases. Crit Rev Biochem Mol Biol 48:332–356. doi:10.3109/10409238.2013.790873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knock GA, Ward JPT (2011) Redox regulation of protein kinases as a modulator of vascular function. Antioxid Redox Signal 15:1531–1547. doi:10.1089/ars.2010.3614

    Article  CAS  PubMed  Google Scholar 

  7. Morgan MJ, Liu Z-G (2010) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115. doi:10.1038/cr.2010.178

    Article  PubMed  PubMed Central  Google Scholar 

  8. Montenarh M (2009) DMAT, an inhibitor of protein kinase CK2 induces reactive oxygen species and DNA double strand breaks. Oncol Rep 21:1593–1597. doi:10.3892/or_00000392

    Article  PubMed  Google Scholar 

  9. Kim GS, Jung JE, Niizuma K, Chan PH (2009) CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemia. J Neurosci 29:14779–14789. doi:10.1523/JNEUROSCI.4161-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guerra B (2012) Downregulation of protein kinase CK2 induces autophagic cell death through modulation of the mTOR and MAPK signaling pathways in human glioblastoma cells. Int J Oncol 41:1967–1976. doi:10.3892/ijo.2012.1635

    Article  PubMed  PubMed Central  Google Scholar 

  11. Qaiser F, Trembley JH, Kren BT et al (2014) Protein Kinase CK2 Inhibition Induces Cell Death via Early Impact on Mitochondrial Function. J Cell Biochem 115:2103–2115. doi:10.1002/jcb.24887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guerra B, Issinger O-G (1999) Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20:391–408. doi:10.1002/(SICI)1522-2683(19990201)20:2<391:AID-ELPS391>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  13. Guerra B, Issinger O-G (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886

    Article  CAS  PubMed  Google Scholar 

  14. St-Denis NA, Litchfield DW (2009) Protein kinase CK2 in health and disease. Cell Mol Life Sci 66:1817–1829. doi:10.1007/s00018-009-9150-2

    Article  CAS  PubMed  Google Scholar 

  15. Trembley JH, Chen Z, Unger G et al (2010) Emergence of protein kinase CK2 as a key target in cancer therapy. BioFactors 36:187–195. doi:10.1002/biof.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guerra B, Iwabuchi K, Issinger O-G (2014) Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett 345:115–123. doi:10.1016/j.canlet.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  17. Hallenborg P, Feddersen S, Francoz S et al (2012) Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ 19:1381–1389. doi:10.1038/cdd.2012.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olsen BB, Issinger OG, Guerra B (2010) Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 29:6016–6026. doi:10.1038/onc.2010.337

    Article  CAS  PubMed  Google Scholar 

  19. Olsen BB, Wang S-Y, Svenstrup TH et al (2012) Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. BMC Mol Biol 13:7. doi:10.1186/1471-2199-13-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerra B, Fischer M, Schaefer S, Issinger O-G (2015) The kinase inhibitor D11 induces caspase-mediated cell death in cancer cells resistant to chemotherapeutic treatment. J Exp Clin Cancer Res 34:125. doi:10.1186/s13046-015-0234-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  22. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  23. Guerra B, Hochscherf J, Jensen NB, Issinger O-G (2015) Identification of a novel potent, selective and cell permeable inhibitor of protein kinase CK2 from the NIH/NCI Diversity Set Library. Mol Cell Biochem 406:151–161. doi:10.1007/s11010-015-2433-z

    Article  CAS  PubMed  Google Scholar 

  24. Marchi S, Giorgi C, Suski JM et al (2012) Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. doi:10.1155/2012/329635

    PubMed  Google Scholar 

  25. Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712. doi:10.1080/10715760701297354

    Article  CAS  PubMed  Google Scholar 

  26. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253. doi:10.1016/j.abb.2007.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytom A 79:405–425. doi:10.1002/cyto.a.21061

    Article  Google Scholar 

  28. To M-S, Aromataris EC, Castro J et al (2010) Mitochondrial uncoupler FCCP activates proton conductance but does not block store-operated Ca(2+) current in liver cells. Arch Biochem Biophys 495:152–158. doi:10.1016/j.abb.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  29. Sakon S, Xue X, Takekawa M et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909. doi:10.1093/emboj/cdg379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Viatour P, Merville M-P, Bours V, Chariot A (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30:43–52. doi:10.1016/j.tibs.2004.11.009

    Article  CAS  PubMed  Google Scholar 

  31. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708. doi:10.1038/ni.2065

    Article  CAS  PubMed  Google Scholar 

  32. Jones PL, Ping D, Boss JM (1997) Tumor necrosis factor alpha and interleukin-1beta regulate the murine manganese superoxide dismutase gene through a complex intronic enhancer involving C/EBP-beta and NF-kappaB. Mol Cell Biol 17:6970–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Djavaheri-Mergny M, Javelaud D, Wietzerbin J, Besançon F (2004) NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett 578:111–115. doi:10.1016/j.febslet.2004.10.082

    Article  CAS  PubMed  Google Scholar 

  34. Kairisalo M, Korhonen L, Blomgren K, Lindholm D (2007) X-linked inhibitor of apoptosis protein increases mitochondrial antioxidants through NF-kappaB activation. Biochem Biophys Res Commun 364:138–144. doi:10.1016/j.bbrc.2007.09.115

    Article  CAS  PubMed  Google Scholar 

  35. Vilk G, Saulnier RB, Pierre RS, Litchfield DW (1999) Inducible Expression of Protein Kinase CK2 in Mammalian Cells: EVIDENCE FOR FUNCTIONAL SPECIALIZATION OF CK2 ISOFORMS. J Biol Chem 274:14406–14414. doi:10.1074/jbc.274.20.14406

    Article  CAS  PubMed  Google Scholar 

  36. Chen C, Edelstein LC, Gélinas C (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20:2687–2695

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim JJ, Lee SB, Park JK, Yoo YD (2010) TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ 17:1420–1434. doi:10.1038/cdd.2010.19

    Article  CAS  PubMed  Google Scholar 

  38. Genestier L, Bonnefoy-Berard N, Rouault JP et al (1995) Tumor necrosis factor-alpha up-regulates Bcl-2 expression and decreases calcium-dependent apoptosis in human B cell lines. Int Immunol 7:533–540

    Article  CAS  PubMed  Google Scholar 

  39. Vander Heiden MG, Chandel NS, Williamson EK et al (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637

    Article  CAS  PubMed  Google Scholar 

  40. Shirakata Y, Koike K (2003) Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem 278:22071–22078. doi:10.1074/jbc.M301606200

    Article  CAS  PubMed  Google Scholar 

  41. Miyata Y (2009) Protein kinase CK2 in health and disease: CK2: the kinase controlling the Hsp90 chaperone machinery. Cell Mol Life Sci 66:1840–1849. doi:10.1007/s00018-009-9152-0

    Article  CAS  PubMed  Google Scholar 

  42. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    Article  CAS  Google Scholar 

  43. Echeverría PC, Bernthaler A, Dupuis P et al (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6:e26044. doi:10.1371/journal.pone.0026044

    Article  PubMed  PubMed Central  Google Scholar 

  44. Taipale M, Krykbaeva I, Koeva M et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001. doi:10.1016/j.cell.2012.06.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu J, Koul D, Yao J et al (2013) Novel HSP90 inhibitor NVP-HSP990 targets cell-cycle regulators to ablate Olig2-positive glioma tumor-initiating cells. Cancer Res 73:3062–3074. doi:10.1158/0008-5472.CAN-12-2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caldas-Lopes E, Cerchietti L, Ahn JH et al (2009) Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA 106:8368–8373. doi:10.1073/pnas.0903392106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duncan JS, Litchfield DW (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim Biophys Acta 1784:33–47. doi:10.1016/j.bbapap.2007.08.017

    Article  CAS  PubMed  Google Scholar 

  48. Trembley JH, Wang G, Unger G et al (2009) Protein kinase CK2 in health and disease: CK2: a key player in cancer biology. Cell Mol Life Sci 66:1858–1867. doi:10.1007/s00018-009-9154-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ravi R, Bedi A (2002) Sensitization of tumor cells to Apo2 ligand/TRAIL-induced apoptosis by inhibition of casein kinase II. Cancer Res 62:4180–4185

    CAS  PubMed  Google Scholar 

  50. Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387. doi:10.1016/j.pharmthera.2005.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100. doi:10.1146/annurev.pharmtox.46.120604.141043

    Article  CAS  PubMed  Google Scholar 

  52. Suh JK, Robertus JD (2000) Yeast flavin-containing monooxygenase is induced by the unfolded protein response. Proc Natl Acad Sci USA 97:121–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gilroy DW, Colville-Nash PR, Willis D et al (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698–701. doi:10.1038/9550

    Article  CAS  PubMed  Google Scholar 

  54. Sun Y, Chen J, Rigas B (2009) Chemopreventive agents induce oxidative stress in cancer cells leading to COX-2 overexpression and COX-2-independent cell death. Carcinogenesis 30:93–100. doi:10.1093/carcin/bgn242

    Article  PubMed  Google Scholar 

  55. Sun Y, Tang XM, Half E et al (2002) Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells. Cancer Res 62:6323–6328

    CAS  PubMed  Google Scholar 

  56. Lu X, Kambe F, Cao X et al (2008) 3beta-Hydroxysteroid-delta24 reductase is a hydrogen peroxide scavenger, protecting cells from oxidative stress-induced apoptosis. Endocrinology 149:3267–3273. doi:10.1210/en.2008-0024

    Article  CAS  PubMed  Google Scholar 

  57. Kuehnle K, Crameri A, Kälin RE et al (2008) Prosurvival effect of DHCR24/Seladin-1 in acute and chronic responses to oxidative stress. Mol Cell Biol 28:539–550. doi:10.1128/MCB.00584-07

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Olaf-Georg Issinger (University of Southern Denmark) for critically reading the manuscript; Dr. David W. Litchfield (University of Western Ontario) for the generous gift of the RS3.22 cell line; Dr. Tuula Kallunki (Danish Cancer Society) for providing the Bcl-xL viral vector; Dr. Phillip Hallenborg (University of Southern Denmark) for expertise in establishing Bcl-xL-overexpressing cardiomyoblasts; and Tina H. Svenstrup for technical assistance. We thank the Drug Synthesis and Chemistry Branch, Developmental Therapeutics Program, NCI, USA, for providing us with viable samples. This work was supported by the Danish Council for Independent Research-Natural Sciences (Grant 1323-00212A to B. Guerra).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Guerra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2017_3085_MOESM1_ESM.tiff

Supplementary material Fig. S1 Analysis of Bcl-xL overexpression in cardiomyoblasts. H9c-2 cells transduced with Bcl-xL-encoding viral particles were transfected with scramble siRNA or siRNA against the individual catalytic subunits of CK2 as indicated in the figure. Whole cell lysates were analyzed employing antibodies against the indicated proteins. (TIFF 484 kb)

Supplementary material Table S1 Selected hits identified in the gene expression profile (DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer, S., Guerra, B. Protein kinase CK2 regulates redox homeostasis through NF-κB and Bcl-xL in cardiomyoblasts. Mol Cell Biochem 436, 137–150 (2017). https://doi.org/10.1007/s11010-017-3085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3085-y

Keywords

Navigation