Skip to main content
Log in

New insights into BMP9 signaling in liver diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bone morphogenetic protein 9 (BMP9) is a recently discovered cytokine mainly secreted by the liver and is a member of the transforming growth factor β (TGF-β) superfamily. In recent years, an increasing number of studies have shown that BMP9 is associated with liver diseases, including nonalcoholic fatty liver disease (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC), and BMP9 signaling may play dual roles in liver diseases. In this review, we mainly summarized and discussed the roles and potential mechanisms of BMP9 signaling in NAFLD, liver fibrosis and HCC. Specifically, this article will provide a better understanding of BMP9 signaling and new clues for the treatment of liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620. https://doi.org/10.1016/j.cellsig.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Kim M, Choe S (2011) BMPs and their clinical potentials. BMB Rep 44(10):619–634. https://doi.org/10.5483/BMBRep.2011.44.10.619

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P (2015) Bone morphogenetic protein signaling in bone homeostasis. Bone 80:43–59. https://doi.org/10.1016/j.bone.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  4. Hiepen C, Yadin D, Rikeit P, Dörpholz G, Knaus P (2016) Actions from head to toe: an update on bone/body morphogenetic proteins in health and disease. Cytsokine Growth Factor Rev 27:1–11. https://doi.org/10.1016/j.cytogfr.2015.12.006

    Article  CAS  Google Scholar 

  5. Miller AF, Harvey SAK, Thies RS, Olson MS (2000) Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 275(24):17937–17945. https://doi.org/10.1074/jbc.275.24.17937

    Article  CAS  PubMed  Google Scholar 

  6. Bidart M, Ricard N, Levet S, Samson M, Mallet C, David L et al (2012) BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell Mol Life Sci 69(2):313–324. https://doi.org/10.1007/s00018-011-0751-1

    Article  CAS  PubMed  Google Scholar 

  7. Ploemacher RE, Engels LJ, Mayer AE, Thies S, Neben S (1999) Bone morphogenetic protein 9 is a potent synergistic factor for murine hemopoietic progenitor cell generation and colony formation in serum-free cultures. Leukemia 13(3):428–437. https://doi.org/10.1038/sj.leu.2401363

    Article  CAS  PubMed  Google Scholar 

  8. Kang Q, Sun MH, Cheng H, Peng Y, Montag AG, Deyrup AT et al (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther 11(17):1312–1320. https://doi.org/10.1038/sj.gt.3302298

    Article  CAS  PubMed  Google Scholar 

  9. Yang M, Liang Z, Yang M, Jia Y, Yang G, He Y et al (2019) Role of bone morphogenetic protein-9 in the regulation of glucose and lipid metabolism. FASEB J 33(9):10077–10088. https://doi.org/10.1096/fj.201802544RR

    Article  CAS  PubMed  Google Scholar 

  10. Truksa J, Peng H, Lee P, Beutler E (2006) Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc Natl Acad Sci U S A 103(27):10289–10293. https://doi.org/10.1073/pnas.0603124103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schnitzler AC, Mellott TJ, Lopez-Coviella I, Tallini YN, Kotlikoff MI, Follettie MT et al (2010) BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons. J Neurosci 30(24):8221–8228. https://doi.org/10.1523/jneurosci.5611-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garcia de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S (2016) BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev 27:65–79. https://doi.org/10.1016/j.cytogfr.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Yoshimatsu Y, Lee YG, Akatsu Y, Taguchi L, Suzuki HI, Cunha SI et al (2013) Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc Natl Acad Sci U S A 110(47):18940–18945. https://doi.org/10.1073/pnas.1310479110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Breitkopf-Heinlein K, Meyer C, Konig C, Gaitantzi H, Addante A, Thomas M et al (2017) BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66(5):939–954. https://doi.org/10.1136/gutjnl-2016-313314

    Article  CAS  PubMed  Google Scholar 

  15. Li P, Li Y, Zhu L, Yang Z, He J, Wang L et al (2018) Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochim Biophys Acta Mol Basis Dis 1864(3):709–720. https://doi.org/10.1016/j.bbadis.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  16. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L et al (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280(26):25111–25118. https://doi.org/10.1074/jbc.M503328200

    Article  CAS  PubMed  Google Scholar 

  17. Yadin D, Knaus P, Mueller TD (2016) Structural insights into BMP receptors: specificity, activation and inhibition. Cytokine Growth Factor Rev 27:13–34. https://doi.org/10.1016/j.cytogfr.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  18. Nickel J, Mueller TD (2019) Specification of BMP Signaling. Cells 8(12):1579. https://doi.org/10.3390/cells8121579

    Article  CAS  PubMed Central  Google Scholar 

  19. Lawera A, Tong Z, Thorikay M, Redgrave RE, Cai J, Mv D et al (2019) Role of soluble endoglin in BMP9 signaling. Proc Natl Acad Sci U S A 116(36):17800–17808. https://doi.org/10.1073/pnas.1816661116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961. https://doi.org/10.1182/blood-2006-07-034124

    Article  CAS  PubMed  Google Scholar 

  21. Herrera B, van Dinther M, Ten Dijke P, Inman GJ (2009) Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res 69(24):9254–9262. https://doi.org/10.1158/0008-5472.can-09-2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herrera B, Dooley S, Breitkopf-Heinlein K (2014) Potential roles of bone morphogenetic protein (BMP)-9 in human liver diseases. Int J Mol Sci 15(4):5199–5220. https://doi.org/10.3390/ijms15045199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Star GP, Giovinazzo M, Langleben D (2010) Bone morphogenic protein-9 stimulates endothelin-1 release from human pulmonary microvascular endothelial cells: a potential mechanism for elevated ET-1 levels in pulmonary arterial hypertension. Microvasc Res 80(3):349–354. https://doi.org/10.1016/j.mvr.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(6):964–972. https://doi.org/10.1242/jcs.002949

    Article  CAS  PubMed  Google Scholar 

  25. Herrera B, Sánchez A, Fabregat I (2012) BMPS and liver: more questions than answers. Curr Pharm Des 18(27):4114–4125. https://doi.org/10.2174/138161212802430503

    Article  CAS  PubMed  Google Scholar 

  26. Xu DJ, Zhao YZ, Wang J, He JW, Weng YG, Luo JY (2012) Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. BMB Rep 45(4):247–252. https://doi.org/10.5483/bmbrep.2012.45.4.247

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Song T, Wang W, Wang J, He J, Wu N et al (2012) P38 and ERK1/2 MAPKs act in opposition to regulate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS ONE 7(8):e43383. https://doi.org/10.1371/journal.pone.0043383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao YF, Xu J, Wang WJ, Wang J, He JW, Li L et al (2013) Activation of JNKs is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells. BMB Rep 46(8):422–427. https://doi.org/10.5483/bmbrep.2013.46.8.266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Younossi ZM (2019) Non-alcoholic fatty liver disease—A global public health perspective. J Hepatol 70(3):531–544. https://doi.org/10.1016/j.jhep.2018.10.033

    Article  PubMed  Google Scholar 

  30. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M et al (2020) A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 73(1):202–209. https://doi.org/10.1016/j.jhep.2020.03.039

    Article  PubMed  Google Scholar 

  31. Eslam M, Sanyal AJ, George J, International Consensus P (2020) MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158(7):1999–2014. https://doi.org/10.1053/j.gastro.2019.11.312

    Article  CAS  PubMed  Google Scholar 

  32. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E et al (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69(6):2672–2682. https://doi.org/10.1002/hep.30251

    Article  PubMed  Google Scholar 

  33. Takaki A, Kawai D, Yamamoto K (2013) Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). Int J Mol Sci 14(10):20704–20728. https://doi.org/10.3390/ijms141020704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922. https://doi.org/10.1038/s41591-018-0104-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia Y, Niu D, Li Q, Huang H, Li X, Li K et al (2019) Effective gene delivery of shBMP-9 using polyethyleneimine-based core-shell nanoparticles in an animal model of insulin resistance. Nanoscale 11(4):2008–2016. https://doi.org/10.1039/c8nr08193j

    Article  CAS  PubMed  Google Scholar 

  36. Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q et al (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21(3):294–301. https://doi.org/10.1038/nbt795

    Article  CAS  PubMed  Google Scholar 

  37. Caperuto LC, Anhe GF, Cambiaghi TD, Akamine EH, Do Carmo Buonfiglio D, Cipolla-Neto J et al (2008) Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance. Endocrinology 149(12):6326–6335. https://doi.org/10.1210/en.2008-0655

    Article  CAS  PubMed  Google Scholar 

  38. Anhê FF, Lellis-Santos C, Leite AR, Hirabara SM, Boschero AC, Curi R et al (2010) Smad5 regulates Akt2 expression and insulin-induced glucose uptake in L6 myotubes. Mol Cell Endocrinol 319(1–2):30–38. https://doi.org/10.1016/j.mce.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  39. Luo Y, Li L, Xu X, Wu T, Yang M, Zhang C et al (2017) Decreased circulating BMP-9 levels in patients with type 2 diabetes is a signature of insulin resistance. Clin Sci 131(3):239–246. https://doi.org/10.1042/CS20160543

    Article  CAS  Google Scholar 

  40. Xu X, Li X, Yang G, Li L, Hu W, Zhang L et al (2017) Circulating bone morphogenetic protein-9 in relation to metabolic syndrome and insulin resistance. Sci Rep 7(1):17529. https://doi.org/10.1038/s41598-017-17807-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang H, Wang W, Yang G, Zhang Y, Li X, Liu H et al (2018) Circulating bone morphogenetic protein-9 levels are associated with hypertension and insulin resistance in humans. J Am Soc Hypertens 12(5):372–380. https://doi.org/10.1016/j.jash.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  42. Morioka T, Emoto M, Yamazaki Y, Kurajoh M, Motoyama K, Mori K et al (2018) Plasma soluble leptin receptor levels are associated with pancreatic β-cell dysfunction in patients with type 2 diabetes. J Diabetes Investig 9(1):55–62. https://doi.org/10.1111/jdi.12657

    Article  CAS  PubMed  Google Scholar 

  43. Cristancho AG, Lazar MA (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12(11):722–734. https://doi.org/10.1038/nrm3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. https://doi.org/10.1038/nature05482

    Article  CAS  PubMed  Google Scholar 

  45. Saltiel AR, Olefsky JM (2017) Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 127(1):1–4. https://doi.org/10.1172/jci92035

    Article  PubMed  PubMed Central  Google Scholar 

  46. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F (2015) Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol 6:4. https://doi.org/10.3389/fphys.2015.00004

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuo MM, Kim S, Tseng CY, Jeon YH, Choe S, Lee DK (2014) BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity. Biomaterials 35(10):3172–3179. https://doi.org/10.1016/j.biomaterials.2013.12.063

    Article  CAS  PubMed  Google Scholar 

  48. Kim S, Choe S (1862) Lee DK (2016) BMP-9 enhances fibroblast growth factor 21 expression and suppresses obesity. Biochim Biophys Acta 7:1237–1246. https://doi.org/10.1016/j.bbadis.2016.04.006

    Article  CAS  Google Scholar 

  49. Yang Z, Li P, Shang Q, Wang Y, He J, Ge S et al (2020) CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARa expression. Sci Adv 6(48):eabc5022. https://doi.org/10.1126/sciadv.abc5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun QJ, Cai LY, Jian J, Cui YL, Huang CK, Liu SQ et al (2021) The Role of bone morphogenetic protein 9 in nonalcoholic fatty liver disease in mice. Front Pharmacol 11:605967. https://doi.org/10.3389/fphar.2020.605967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Q, Liu B, Breitkopf-Heinlein K, Weng H, Jiang Q, Dong P et al (2019) Adenovirus-mediated overexpression of bone morphogenetic protein-9 promotes methionine choline deficiency-induced no-nalcoholic steatohepatitis in non-obese mice. Mol Med Rep 20(3):2743–2753. https://doi.org/10.3892/mmr.2019.10508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaitantzi H, Karch J, Germann L, Cai C, Rausch V, Birgin E et al (2020) BMP-9 modulates the hepatic responses to LPS. Cells 9(3):617. https://doi.org/10.3390/cells9030617

    Article  CAS  PubMed Central  Google Scholar 

  53. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456. https://doi.org/10.1146/annurev-pathol-011110-130246

    Article  CAS  PubMed  Google Scholar 

  54. Tacke F, Trautwein C (2015) Mechanisms of liver fibrosis resolution. J Hepatol 63(4):1038–1039. https://doi.org/10.1016/j.jhep.2015.03.039

    Article  PubMed  Google Scholar 

  55. Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42. https://doi.org/10.1016/j.addr.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee YA, Wallace MC, Friedman SL (2015) Pathobiology of liver fibrosis: a translational success story. Gut 64(5):830–841. https://doi.org/10.1136/gutjnl-2014-306842

    Article  CAS  PubMed  Google Scholar 

  57. Fabre T, Molina MF (2018) Type 3 cytokines IL-17A and IL-22 drive TGF-β-dependent liver fibrosis. Sci Immunol 3(28):7754. https://doi.org/10.1126/sciimmunol.aar7754

    Article  Google Scholar 

  58. Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO (2018) Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 68–69:435–451. https://doi.org/10.1016/j.matbio.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  59. Dewidar B, Meyer C, Dooley S, Meindl-Beinker AN (2019) TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells 8(11):1419. https://doi.org/10.3390/cells8111419

    Article  CAS  PubMed Central  Google Scholar 

  60. Herrera B, Addante A, Sanchez A (2017) BMP signalling at the crossroad of liver fibrosis and regeneration. Int J Mol Sci 19(1):39. https://doi.org/10.3390/ijms19010039

    Article  CAS  PubMed Central  Google Scholar 

  61. Muñoz-Félix JM, González-Núñez M, López-Novoa JM (2013) ALK1-Smad1/5 signaling pathway in fibrosis development: friend or foe? Cytokine Growth Factor Rev 24(6):523–537. https://doi.org/10.1016/j.cytogfr.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  62. Maretti-Mira AC, Wang X, Wang L, DeLeve LD (2019) Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat. Hepatology 69(3):1259–1272. https://doi.org/10.1002/hep.30227

    Article  CAS  PubMed  Google Scholar 

  63. Nieto MA, Huang RY, Jackson RA, Thiery JP (2016) Emt: 2016. Cell 166(1):21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  64. Kulik L, El-Serag HB (2019) Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156(2):477–491. https://doi.org/10.1053/j.gastro.2018.08.065

    Article  PubMed  Google Scholar 

  65. Li Q, Gu X, Weng H, Ghafoory S, Liu Y, Feng T et al (2013) Bone morphogenetic protein-9 induces epithelial to mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci 104(3):398–408. https://doi.org/10.1111/cas.12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Munoz-Felix JM, Cuesta C, Perretta-Tejedor N, Subileau M, Lopez-Hernandez FJ, Lopez-Novoa JM et al (2016) Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro. Cell Signal 28(9):1252–1261. https://doi.org/10.1016/j.cellsig.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  67. Addante A, Roncero C, Almale L, Lazcanoiturburu N, Garcia-Alvaro M, Fernandez M et al (2018) Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury. Liver Int 38(9):1664–1675. https://doi.org/10.1111/liv.13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Desroches-Castan A, Tillet E, Ricard N, Ouarné M, Mallet C, Belmudes L et al (2019) Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis. Hepatology 70(4):1392–1408. https://doi.org/10.1002/hep.30655

    Article  CAS  PubMed  Google Scholar 

  69. Desroches-Castan A, Tillet E, Ricard N, Ouarne M, Mallet C, Feige JJ et al (2019) Differential consequences of Bmp9 deletion on sinusoidal endothelial cell differentiation and liver fibrosis in 129/Ola and C57BL/6 Mice. Cells 8(9):1079. https://doi.org/10.3390/cells8091079

    Article  CAS  PubMed Central  Google Scholar 

  70. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  71. Kanwal F, Singal AG (2019) Surveillance for hepatocellular carcinoma: current best practice and future direction. Gastroenterology 157(1):54–64. https://doi.org/10.1053/j.gastro.2019.02.049

    Article  PubMed  Google Scholar 

  72. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226. https://doi.org/10.1016/j.tcb.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  73. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424. https://doi.org/10.1038/nrc2853

    Article  CAS  PubMed  Google Scholar 

  74. Colak S, Ten Dijke P (2017) Targeting TGF-β signaling in cancer. Trends Cancer 3(1):56–71. https://doi.org/10.1016/j.trecan.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  75. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4):924–940. https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ye L, Kynaston H, Jiang WG (2008) Bone morphogenetic protein-9 induces apoptosis in prostate cancer cells, the role of prostate apoptosis response-4. Mol Cancer Res 6(10):1594–1606. https://doi.org/10.1158/1541-7786.mcr-08-0171

    Article  CAS  PubMed  Google Scholar 

  77. Ouarné M, Bouvard C, Boneva G, Mallet C, Ribeiro J, Desroches-Castan A et al (2018) BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. J Exp Clin Cancer Res 37(1):209. https://doi.org/10.1186/s13046-018-0885-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Varadaraj A, Patel P, Serrao A, Bandyopadhay T, Lee NY, Jazaeri AA et al (2015) Epigenetic regulation of GDF2 suppresses anoikis in ovarian and breast epithelia. Neoplasia 17(11):826–838. https://doi.org/10.1016/j.neo.2015.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Herrera B, Garcia-Alvaro M, Cruz S, Walsh P, Fernandez M, Roncero C et al (2013) BMP9 is a proliferative and survival factor for human hepatocellular carcinoma cells. PLoS ONE 8(7):e69535. https://doi.org/10.1371/journal.pone.0069535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Garcia-Alvaro M, Addante A, Roncero C, Fernandez M, Fabregat I, Sanchez A et al (2015) BMP9-induced survival effect in liver tumor cells requires p38MAPK activation. Int J Mol Sci 16(9):20431–20448. https://doi.org/10.3390/ijms160920431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morse MA, Sun W (2019) The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res 25(3):912–920. https://doi.org/10.1158/1078-0432.ccr-18-1254

    Article  CAS  PubMed  Google Scholar 

  82. Simonelli M, Zucali P, Santoro A, Thomas MB, de Braud FG, Borghaei H et al (2016) Phase I study of PF-03446962, a fully human monoclonal antibody against activin receptor-like kinase-1, in patients with hepatocellular carcinoma. Ann Oncol 27(9):1782–1787. https://doi.org/10.1093/annonc/mdw240

    Article  CAS  PubMed  Google Scholar 

  83. Abou-Alfa GK, Miksad RA, Tejani MA, Williamson S, Gutierrez ME, Olowokure OO et al (2019) A phase Ib, open-label study of dalantercept, an activin receptor-like kinase 1 ligand trap, plus sorafenib in advanced hepatocellular carcinoma. Oncologist 24(2):161-e170. https://doi.org/10.1634/theoncologist.2018-0654

    Article  CAS  PubMed  Google Scholar 

  84. Jung JW, Yoon S-M, Kim S, Jeon Y-H (2016) Bone morphogenetic protein-9 is a potent growth inhibitor of hepatocellular carcinoma and reduces the liver cancer stem cells population. Oncotarget 7(45):73754–73768. https://doi.org/10.18632/oncotarget.12062

    Article  PubMed  PubMed Central  Google Scholar 

  85. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin Gastroenterol Hepatol 13(4):643–654. https://doi.org/10.1016/j.cgh.2014.04.014

    Article  PubMed  Google Scholar 

  86. Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34(3):274–285. https://doi.org/10.1111/j.1365-2036.2011.04724.x

    Article  CAS  PubMed  Google Scholar 

  87. Margini C, Dufour JF (2016) The story of HCC in NAFLD: from epidemiology, across pathogenesis, to prevention and treatment. Liver Int 36(3):317–324. https://doi.org/10.1111/liv.13031

    Article  CAS  PubMed  Google Scholar 

  88. El-Serag HB, Tran T, Everhart JE (2004) Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 126(2):460–468. https://doi.org/10.1053/j.gastro.2003.10.065

    Article  PubMed  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (Grant No.81670515).

Author information

Authors and Affiliations

Authors

Contributions

QQJ: conceptualization, reviewed the literature, writing of original draft; BBL: conceptualization, revised the manuscript; KSX: critical revision and final approval of manuscript.

Corresponding author

Correspondence to Ke-Shu Xu.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, QQ., Liu, BB. & Xu, KS. New insights into BMP9 signaling in liver diseases. Mol Cell Biochem 476, 3591–3600 (2021). https://doi.org/10.1007/s11010-021-04182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04182-6

Keywords

Navigation