Skip to main content
Log in

In-vitro inhibition of NLRP3 inflammasome by 3,6-dihydroxyflavone (3,6-DHF): a therapeutic strategy for the treatment of chronic inflammatory and autoimmune diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex has an important role in immune system and its abnormal activation is associated with the pathogenesis of various inflammatory and auto-immune diseases. The study reveals the anti-inflammatory effects of 3,6-dihydroxyflavone (3,6-DHF). Here, we aimed to determine the inhibitory effects of 3,6-DHF on NLRP3 inflammasome and its associated components, thereby determining the signaling pathways involved in the inhibition. Reactive oxygen species (ROS) and nitric oxide (NO) were quantified by chemiluminescence and Griess methods, respectively. Inflammatory cell model was induced in human leukemic monocytes (THP-1). mRNA levels were estimated through real-time RT-PCR, protein expressions were evaluated by protein slot blot and immunocytochemistry, MTT and alamar blue assays were employed for toxicity studies. The compound 3,6-DHF was found to be the potent inhibitor of NLRP3 inflammasome by targeting the molecules involve in its activation pathway. Anti-inflammatory effects were revealed by inhibition of ROS and NO, reduction in the transcription of caspase-1, ASC, IL-1β and TLR-4 was observed along with the marked inhibition of NLRP3, IL-18, NF-κB and pNF-κB at translational level. 3,6-DHF was non-toxic on normal human fibroblast (BJ) and THP-1 cells and, could be a potential therapeutic agent in NLRP3 inflammasome driven diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data analyzed during the study is not publically available but can be available on request to corresponding author.

References

  1. Duan L, Rao X, Sigdel KR (2019) Regulation of inflammation in autoimmune disease. Hindawi. https://doi.org/10.1155/2019/7403796

    Article  Google Scholar 

  2. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204. https://doi.org/10.18632/oncotarget.23208

    Article  PubMed  Google Scholar 

  3. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR (2018) Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 9:2379. https://doi.org/10.3389/fimmu.2018.02379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436. https://doi.org/10.1016/j.it.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  5. Czerkies M, Kwiatkowska K (2014) Toll-like receptors and their contribution to innate immunity: focus on TLR4 activation by lipopolysaccharide. Med J Cell Biol 4:1–23. https://doi.org/10.2478/acb-2014-0001

    Article  Google Scholar 

  6. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Sig Transduct Target Ther 2:1–9. https://doi.org/10.1038/sigtrans.2017.23

    Article  CAS  Google Scholar 

  7. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832. https://doi.org/10.1016/j.cell.2010.01.040

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Guo J, Bi L (2020) Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother 130:110542. https://doi.org/10.1016/j.biopha.2020.110542

    Article  CAS  PubMed  Google Scholar 

  9. Sutterwala FS, Haasken S, Cassel SL (2014) Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319:82. https://doi.org/10.1111/nyas.12458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang X, Xu A, Lv J, Zhang Q, Ran Y, Wei C, Wu J (2020) Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem 185:111822. https://doi.org/10.1016/j.ejmech.2019.111822

    Article  CAS  PubMed  Google Scholar 

  11. Guo H, Callaway JB, Ting JPY (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687. https://doi.org/10.1038/nm.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. An N, Gao Y, Si Z, Zhang H, Wang L, Tian C, Yuan M, Yang M, Li X, Shang H, Xiong X, Xing Y (2019) Regulatory mechanisms of the NLRP3 inflammasome, a novel immune-inflammatory marker in cardiovascular diseases. Front Immunol 10:1592. https://doi.org/10.3389/fimmu.2019.01592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, Dinarello CA, Fujita MJ (2010) Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β. J Biol Chem 285:6477–6488. https://doi.org/10.1074/jbc.M109.064907

    Article  CAS  PubMed  Google Scholar 

  14. Miskiewicz A, Szparecki G, Durlik M, Rydzewska G, Ziobrowski I, Górska R (2015) The Q705K and F359L single-nucleotide polymorphisms of NOD-like receptor signaling pathway: association with chronic pancreatitis, pancreatic cancer, and periodontitis. Arch Immunol Ther Exp 63:485–494. https://doi.org/10.1007/s00005-015-0355-9

    Article  CAS  Google Scholar 

  15. Verma D, Bivik C, Farahani E, Synnerstad I, Fredrikson M, Enerbäck C, Rosdahl I, Söderkvist P (2012) Inflammasome polymorphisms confer susceptibility to sporadic malignant melanoma. Pigm Cell Melanoma Res 25:506–513. https://doi.org/10.1111/j.1755-148X.2012.01008.x

    Article  CAS  Google Scholar 

  16. Castaño-Rodríguez N, Kaakoush NO, Goh K-L, Fock KM, Mitchell HM (2014) The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case–control study and gene expression analyses. PLoS ONE 9:e98899. https://doi.org/10.1371/journal.pone.0098899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang A, Yu J, Yan S, Zhao X, Chen C, Zhou Y, Zhao X, Hua M, Wang R, Zhang C, Zhong C, He N, Ji C, Ma D (2018) The genetic polymorphism and expression profiles of NLRP3 inflammasome in patients with chronic myeloid leukemia. Hum Immunol 79:57–62. https://doi.org/10.1016/j.humimm.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  18. Ju M, Bi J, Wei Q, Jiang L, Guan Q, Zhang M, Song X, Chen T, Fan J, Li X, Wei M, Zhao L (2021) Pan-cancer analysis of NLRP3 inflammasome with potential implications in prognosis and immunotherapy in human cancer. Brief Bioinform. https://doi.org/10.1093/bib/bbaa345

    Article  PubMed  Google Scholar 

  19. Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22:550–559. https://doi.org/10.1038/s41590-021-00886-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cascorbi I (2017) Inflammation: treatment progress and limitations. Wiley Online Libr. https://doi.org/10.1002/cpt.792

    Article  Google Scholar 

  22. Yang Y, Wang H, Kouadir M, Song H, Shi F (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Discov 10:1–11. https://doi.org/10.1038/s41419-019-1413-8

    Article  Google Scholar 

  23. Pirzada RH, Javaid N, Choi S (2020) The roles of the NLRP3 inflammasome in neurodegenerative and metabolic diseases and in relevant advanced therapeutic interventions. Genes 11:131. https://doi.org/10.3390/genes11020131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim HP (2022) The long search for pharmacologically useful anti-inflammatory flavonoids and their action mechanisms: past, present, and future. Biomol Ther 30:117. https://doi.org/10.4062/biomolther.2022.004

    Article  CAS  Google Scholar 

  25. Özenver N, Efferth T (2021) Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 170:105710. https://doi.org/10.1016/j.phrs.2021.105710

    Article  CAS  PubMed  Google Scholar 

  26. Lim H, Min DS, Park H, Kim HP (2018) Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol 355:93–102. https://doi.org/10.1016/j.taap.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  27. Martínez G, Mijares MR, De Sanctis JB (2019) Effects of flavonoids and its derivatives on immune cell responses. Recent Pat Inflamm Allergy Drug Discov 13:84–104. https://doi.org/10.2174/1872213X13666190426164124

    Article  PubMed  Google Scholar 

  28. Havsteen B (1983) Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 32:1141–1148. https://doi.org/10.1016/0006-2952(83)90262-9

    Article  CAS  PubMed  Google Scholar 

  29. Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, Hayashi H, Fujii I, Ikutani M, Hirai Y, Muraguchi A, Takatsu K (2014) Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol 96:1087–1100. https://doi.org/10.1189/jlb.3A0114-005RR

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Wang G, Gurley EC, Zhou H (2014) Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS ONE 9:e107072. https://doi.org/10.1371/journal.pone.0107072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan SH, Wang YY, Lu J, Zheng YL, Wu DM, Li MQ, Hu B, Zhang ZF, Cheng W, Shan Q (2014) Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS ONE 9:e89961. https://doi.org/10.1371/journal.pone.0089961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu MM, Zhou QM (2018) 3,6-Dihydroxyflavone suppresses the epithelial-mesenchymal transition, migration and invasion in endometrial stromal cells by inhibiting the Notch signaling pathway. Eur Rev Med Pharmacol Sci 22:4009–4017. https://doi.org/10.26355/eurrev_201806_15287

    Article  PubMed  Google Scholar 

  33. Medhe S, Bansal P, Srivastava MM (2014) Enhanced antioxidant activity of gold nanoparticle embedded 3,6-dihydroxyflavone: a combinational study. Appl Nanosci 4:153–161. https://doi.org/10.1007/s13204-012-0182-9

    Article  CAS  Google Scholar 

  34. Lee JY, Lee EJ, Jeong KW, Kim YM (2011) Antimicrobial flavonoid, 3,6-dihydroxyflavone, have dual inhibitory activity against KAS III and KAS I. Bull Korean Chem Soc 32:3219–3222. https://doi.org/10.5012/bkcs.2011.32.9.3219

    Article  CAS  Google Scholar 

  35. Chang H, Lin H, Yi L, Zhu J, Zhou Y, Mi M, Zhang QJ (2010) 3,6-Dihydroxyflavone induces apoptosis in leukemia HL-60 cell via reactive oxygen species-mediated p38 MAPK/JNK pathway. Eur J Pharmacol 648:31–38. https://doi.org/10.1016/j.ejphar.2010.08.020

    Article  CAS  PubMed  Google Scholar 

  36. Peng X, Chang H, Chen J, Zhang Q, Yu X, Mi M (2017) 3,6-Dihydroxyflavone regulates microRNA-34a through DNA methylation. BMC Cancer 17:1–9. https://doi.org/10.1186/s12885-017-3638-1

    Article  CAS  Google Scholar 

  37. Peng X, Chang H, Gu Y, Chen J, Yi L, Xie Q, Zhu J, Zhang Q, Mi M (2015) 3,6-Dihydroxyflavone suppresses breast carcinogenesis by epigenetically regulating miR-34a and miR-21. Cancer Prev Res 8:509–517. https://doi.org/10.1158/1940-6207.CAPR-14-0357

    Article  CAS  Google Scholar 

  38. Chen J, Chang H, Peng X, Gu Y, Yi L, Zhang Q, Zhu J, Mi M (2016) 3,6-Dihydroxyflavone suppresses the epithelial–mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep 6:1–9. https://doi.org/10.1038/srep28858

    Article  CAS  Google Scholar 

  39. Hui C, Yujie F, Lijia Y, Long Y, Hongxia X, Yong Z, Jundong Z, Qianyong Z, Mantian M (2012) MicroRNA-34a and microRNA-21 play roles in the chemopreventive effects of 3,6-dihydroxyflavone on 1-methyl-1-nitrosourea-induced breast carcinogenesis. Breast Cancer Res 14:1–11. https://doi.org/10.1186/bcr3194

    Article  CAS  Google Scholar 

  40. Lee E, Jeong K-W, Jnawali HN, Shin A, Heo Y-S, Kim Y (2014) Cytotoxic activity of 3,6-dihydroxyflavone in human cervical cancer cells and its therapeutic effect on c-Jun N-terminal kinase inhibition. Molecules 19:13200–13211. https://doi.org/10.3390/molecules190913200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zito G, Buscetta M, Cimino M, Dino P, Bucchieri F, Cipollina C (2020) Cellular models and assays to study NLRP3 inflammasome biology. Int J Mol Sci 21:4294. https://doi.org/10.3390/ijms21124294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gong Y-N, Wang X, Wang J, Yang Z, Li S, Yang J, Liu L, Lei X, Shao F (2010) Chemical probing reveals insights into the signaling mechanism of inflammasome activation. Cell Res 20:1289–1305. https://doi.org/10.1038/cr.2010.135

    Article  CAS  PubMed  Google Scholar 

  43. Chambers WH, Taylor JR, Klesius PH (1983) Isolation of bovine polymorphonuclear leukocytes by density gradient centrifugation. Vet Immunol Immunopathol 5:197–202. https://doi.org/10.1016/0165-2427(83)90020-X

    Article  CAS  PubMed  Google Scholar 

  44. Helfand SL, Werkmeister J, Roder JC (1982) Chemiluminescence response of human natural killer cells. I. The relationship between target cell binding, chemiluminescence, and cytolysis. J Exp Med 156:492–505. https://doi.org/10.1084/jem.156.2.492

    Article  CAS  PubMed  Google Scholar 

  45. El Ashry ES, El Tamany ES, Abd El Fattah ME, Aly MR, Boraei AT, Mesaik MA, Abdalla OM, Fatima B, Jabeen A, Shukrulla A, Soomro S (2013) Immunomodulatory properties of S- and N-alkylated 5-(1H-indol-2-yl)-1,3,4-oxadiazole-2(3H)-thione. J Enzym Inhib Med Chem 28:105–112. https://doi.org/10.3109/14756366.2011.636361

    Article  CAS  Google Scholar 

  46. Scholz G, Pohl I, Genschow E, Klemm M, Spielmann H (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissue Organs 165:203–211. https://doi.org/10.1159/000016700

    Article  CAS  Google Scholar 

  47. Strober W (1997) Trypan blue exclusion test of cell viability. Curr Protoc Immunol. https://doi.org/10.1002/0471142735.ima03bs21

    Article  Google Scholar 

  48. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  49. Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142–147. https://doi.org/10.1016/0003-2697(82)90677-7

    Article  CAS  PubMed  Google Scholar 

  50. Xu S, Li X, Liu Y, Xia Y, Chang R, Zhang C (2019) Inflammasome inhibitors: promising therapeutic approaches against cancer. J Hematol Oncol 12:1–13. https://doi.org/10.1186/s13045-019-0755-0

    Article  Google Scholar 

  51. Liu B, Yu J (2021) Anti-NLRP3 inflammasome natural compounds: an update. Biomedicines 9:136. https://doi.org/10.3390/biomedicines9020136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chikaraishi A, Hirahashi J, Takase O, Marumo T, Hishikawa K, Hayashi M, Saruta T (2001) Tranilast inhibits interleukin-1β-induced monocyte chemoattractant protein-1 expression in rat mesangial cells. Eur J Pharmacol 427:151–158. https://doi.org/10.1016/s0014-2999(01)01215-8

    Article  CAS  PubMed  Google Scholar 

  53. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Darakhshan S, Pour AB (2015) Tranilast: a review of its therapeutic applications. Pharmacol Res 91:15–28. https://doi.org/10.1016/j.phrs.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Wang Z, Sidhu PS, Desai UR, Zhou Q (2015) 6-Hydroxyflavone and derivatives exhibit potent anti-inflammatory activity among mono-, di-and polyhydroxylated flavones in kidney mesangial cells. PLoS ONE 10:e0116409. https://doi.org/10.1371/journal.pone.0116409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen Y, Junger WG (2012) Measurement of oxidative burst in neutrophils. Leucocytes. https://doi.org/10.1007/978-1-61779-527-5_8

    Article  Google Scholar 

  57. Sedeek M, Nasrallah R, Touyz RM, Hébert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24:1512–1518. https://doi.org/10.1681/ASN.2012111112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sho T, Xu J (2019) Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 66:4–13. https://doi.org/10.1002/bab.1700

    Article  CAS  PubMed  Google Scholar 

  59. Rahman T, Hosen I, Islam MT, Shekhar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol. https://doi.org/10.4236/abb.2012.327123

    Article  Google Scholar 

  60. Winter SV, Zychlinsky A (2018) The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species. J Biol Chem 293:4893–4900. https://doi.org/10.1074/jbc.RA117.001105

    Article  CAS  Google Scholar 

  61. Van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Cancer Cell Cult. https://doi.org/10.1007/978-1-61779-080-5_20

    Article  Google Scholar 

  62. Sun SC (2011) Non-canonical NF-κB signaling pathway. Cell Res 21:71–85. https://doi.org/10.1038/cr.2010.177

    Article  CAS  PubMed  Google Scholar 

  63. Ozaki E, Campbell M, Doyle SL (2015) Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res 8:15. https://doi.org/10.2147/JIR.S51250

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, Deng X, Liang G, Zhang H, Jiang W, Zhou R (2018) Tranilast directly targets NLRP 3 to treat inflammasome-driven diseases. EMBO Mol Med 10:e8689. https://doi.org/10.15252/emmm.201708689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schmidt RL, Lenz LL (2012) Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation. PLoS ONE. https://doi.org/10.1371/journal.pone.0045186

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang H, Zahid A, Ismail H, Tang Y, Jin T, Tao J (2021) An overview of disease models for NLRP3 inflammasome over-activation. Expert Opin Drug Deliv 16:429–446. https://doi.org/10.1080/17460441.2021.1844179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported from Higher Education Commission (HEC), Pakistan (Project No. 8263 NRPU 2017-18).

Funding

This study was financially supported by Higher Education Commission (HEC), Pakistan (Project No. 8263 NRPU 2017-18).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. FM performed. Experimentation, collection and analysis of data and write first draft of manuscript, AJ, concieved the study, design and supervise the experiments, responsible for fund support, revised and finalized the manuscript, SUS, revised the manuscript, contributed in study design and methods, SFS contribute in performing biological assays, SB and SF involved in the selection and provision of compound and manuscript revision.

Corresponding author

Correspondence to Almas Jabeen.

Ethics declarations

Conflict of interest

The author has no conflict of interest as defined by Journal of Molecular and Cellular Biochemistry.

Ethical approval

Human blood was used in this study after ethical approval from Ethics Committee, International Center for Chemical and Biological Sciences (ICCBS/IEC-008-BC-2015.Protocol/1.0), University of Karachi. Human blood was withdrawn after the written informed consent from the participated subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, F., Jabeen, A., Shah, S.F. et al. In-vitro inhibition of NLRP3 inflammasome by 3,6-dihydroxyflavone (3,6-DHF): a therapeutic strategy for the treatment of chronic inflammatory and autoimmune diseases. Mol Cell Biochem 478, 555–570 (2023). https://doi.org/10.1007/s11010-022-04527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04527-9

Keywords

Navigation