Skip to main content
Log in

Rivastigmine reverses cognitive deficit and acetylcholinesterase activity induced by ketamine in an animal model of schizophrenia

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Schizophrenia is one of the most disabling mental disorders that affects up to 1 % of the population worldwide. Although the causes of this disorder remain unknown, it has been extensively characterized by a broad range of emotional, ideational and cognitive impairments. Studies indicate that schizophrenia affects neurotransmitters such as dopamine, glutamate and acetylcholine. Recent studies suggest that rivastigmine (an acetylcholinesterase inhibitor) is important to improve the cognitive symptoms of schizophrenia. Therefore, the present study evaluated the protective effect of rivastigmine against the ketamine-induced behavioral (hyperlocomotion and cognitive deficit) and biochemical (increase of acetylcholinesterase activity) changes which characterize an animal model of schizophrenia in rats. Our results indicated that rivastigmine was effective to improve the cognitive deficit in different task (immediate memory, long term memory and short term memory) induced by ketamine in rats. Moreover, we observed that rivastigmina reversed the increase of acetylcholinesterase activity induced by ketamine in the cerebral cortex, hippocampus and striatum. However, rivastigmine was not able to prevent the ketamine-induced hyperlocomotion. In conslusion, ours results indicate that cholinergic system might be an important therapeutic target in the physiopathology of schizophrenia, mainly in the cognition, but additional studies should be carried.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

ChAT:

Choline acetyltransferase

ChEI:

Acetylcholinesterase inhibitors

CNS:

Central nervous system

NMDA:

N-Methyl-D-aspartate

References

  • Aasen I, Kumari V, Sharma T (2005) Effects of rivastigmine on sustained attention in schizophrenia: an FMRI study. J Clin Psychopharmacol 25:311–317

    Article  PubMed  CAS  Google Scholar 

  • Adell A, Jiménez-Sánchez L, López-Gil X, Romón T (2012) Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 38(1):9–14

    Article  PubMed  Google Scholar 

  • AhnAllen CG (2012) The role of the α7 nicotinic receptor in cognitive processing of persons with schizophrenia. Curr Opin Psychiatry 25(2):103–8. Review

    Google Scholar 

  • Azevedo LM, Giera M, Lingeman H, Niessen WM (2011) Analysis of acetylcholinesterase inhibitors: bioanalysis, gradation and metabolism. Biomed Chromat 25:278–299

    Article  Google Scholar 

  • Barch MD, Ceaser A (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cognitive Sci 16:27–34

    Article  Google Scholar 

  • Barr RS, Culhane MA, Jubelt LE, Mufti RS, Dyer MA, Weiss AP, Deckersbach T, Kelly JF, Freudenreich O, Goff DC, Evins AE (2008) The effects of transdermal nicotine on cognition in nonsmokers with schizophrenia and nonpsychiatric controls. Neuropsychopharmacol 33(3):480–90

    Google Scholar 

  • Barros R, Moreira P, Oliveira B (2005) Effect of social desirability on dietary intake estimated from a food questionnaire. Acta Med Port 18:241–247

    PubMed  Google Scholar 

  • Becker A, Grecksch G (2004) Ketamine-induced changes in rat behavior, a possible animal model of schizophrenia. Test of predictive validity. Prog Neuropsychopharmacol Biol Psychiatry 28:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Peters B, Schroeder H, Mann T, Huether G, Grecksch G (2003) Ketamine-induced changes in rat behavior: a possible animal model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 27:687–700

    Article  PubMed  CAS  Google Scholar 

  • Bencherif M, Stachowiak MK, Kucinski AJ, Lippiello PM (2012) Alpha7 nicotinic cholinergic neuromodulation may reconcile multiple neurotransmitter hypotheses of schizophrenia. Med Hypotheses 78:594–600

    Article  PubMed  CAS  Google Scholar 

  • Beratis S, Katrivanou A, Gourzis P (2001) Factors affecting smoking in schizophrenia. Compr Psychiatry 42:393–402

    Article  PubMed  CAS  Google Scholar 

  • Bevilaqua LR, Rossato JI, Medina JH, Izquierdo I, Cammarota M (2003) Src kinase activity is required for avoidance memory formation and recall. Behav Pharmacol 14:649–652

    Article  PubMed  CAS  Google Scholar 

  • Bird TD, Wijsman EM, Nochlin D, Leehey M, Sumi SM, Payami H, Poorkaj P, Nemens E, Rafkind M, Schellenberg GD (1997) Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology 48:949–954

    Article  PubMed  CAS  Google Scholar 

  • Bressan RA, Pilowsky LS (2003) Glutamatergic hypothesis of schizophrenia. Rev Bras Psiquiatr 25:177–183

    Article  PubMed  Google Scholar 

  • Canever L, Oliveira L, De Luca RD, Correa PTF, Fraga DB, Matos MP, Scaini G, Quevedo J, Streck EL, Zugno AI (2010) A rodent model of schizophrenia reveals increase in creatine kinase activity with associated behavior changes. Oxi Med Cel Long 6:421–427

    Article  Google Scholar 

  • Cardinal H, Madore F, St-Louis G, Bert JHE (2002) A predictive model for chronic allograft nephropathy. Nephropathy Transplant Procced 34:1810–1811

    Article  CAS  Google Scholar 

  • Chatterjee S, Khanna M (2011) Dimensional analysis of various rugae patterns in north Indian population Subset. Forensic Dent Sci 3:86–88

    Article  Google Scholar 

  • Chatterjee M, Verma R, Ganguly S, Palit G (2012) Neurochemical and molecular characterization of ketamineinduced experimental psychosis model in mice. Neuropharmacol 63(6):1161–71

    Google Scholar 

  • Combs DR, Advokat C (2000) Antipsychotic medication and smoking prevalence in acutely hospitalized patients with chronic schizophrenia. Schizophr Res 46:129–137

    Article  PubMed  CAS  Google Scholar 

  • Comim CM, Pereira JG, Steckert A, Petronilho F, Barichello T, Quevedo J, Dal-Pizzol F (2009) Rivastigmine reverses habituation memory impairment observed in sepsis survivor rats. Shock 32(3):270–271

    Article  PubMed  CAS  Google Scholar 

  • Csernansky JG, Martin M, Shah R, Bertchume A, Colvin J, Dong H (2005) Cholinesterase inhibitors ameliorate behavioral deficits induced by MK-801 in mice. Neuropsychopharmacol 30:2135–2143

    Article  CAS  Google Scholar 

  • Davis AJ, Holzbauer M, Sharnan DF (1975) Postnatal development of dopamine deamination in the striatum of the RAT. Br J Phlarmac 55:558–560

    Article  CAS  Google Scholar 

  • De Oliveira L, Spiazzi CM, Bortolin T, Canever L, Petronilho F, Mina FC, Dall Pizzol F, Quevedo J, Zugno AI (2009) Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1003–1008

    Article  PubMed  Google Scholar 

  • De Oliveira L, Fraga DB, De Luca RD, Canever L, Ghedim FV, Matos MP, Streck EL, Quevedo J, Zugno AI (2011) Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine. Metab Brain Dis 26:69–77

    Article  PubMed  Google Scholar 

  • Deluca V, Wong AH, Muller DJ, Wong GW, Tyndale RF, Kennedy JL (2004) Evidence of association between smoking and alpha7 nicotinic receptor subunit gene in schizophrenia patients. Neuropsychopharmacol 29:1522–1526

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres VJR, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  • Esterberg ML, Compton MT (2005) Smoking behavior in persons with a schizophrenia-spectrum disorder: a qualitative investigation of the transtheoretical model. Soc Sci Med 61:293–303

    Article  PubMed  Google Scholar 

  • Fraga DB, Deroza PF, Ghedim FV, Streckert AV, De Luca RD, Silveiro A, Cipriano AL, Leffa DD, Borges GD, Quevedo J, Pinho RA, Andrade VM, Dal Pizzol F, Zugno AI (2011) Prenatal exposure to cigarette smoke causes persistent changes in the oxidative balance and in DNA structural integrity in rats sumitted to the animal model of schizophrenia. J Psychi Res 45:1497–1503

    Article  Google Scholar 

  • Freedman R, Adams CE, Leonard S (2000) The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 20:299–306

    Article  PubMed  CAS  Google Scholar 

  • Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T, Talpos J, Tricklebank M (2012) NMDA receptors, cognition and schizophrenia–testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 62(3):1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Harris JG, Kongs S, Allensworth D, Martin L, Tregellas J, Sullivan B, Zerber G, Frredman R (2004) Effects of nicotine on cognitive deficits in schizophrenia. Neuropsychopharmacol 29:1378–1385

    Article  CAS  Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry in press

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psychiatry 143:993–997

    PubMed  CAS  Google Scholar 

  • Izquierdo I, Medina JH (1998) On brain lesions, the milkman and Sigmunda

  • Jubelt LE, Barr RS, Goff DC, Logvinenko T, Weiss AP, Evins AE (2008) Effects of transdermal nicotine on episodic memory in non-smokers with and without schizophrenia. Psychopharmacol (Berl) 199(1):89–98. doi:10.1007/s00213-008-1133-8

  • Kane JM, Correll CU (2010) Pharmacologic treatment of schizophrenia. Dialogues Clin Neurosci 12(3):345–57. Review

    Google Scholar 

  • Karson CN, Mrak RE, Husain MM, Griffin WS (1998) Decreased mesopontine choline acetyltransferase levels in schizophrenia. Correlations with cognitive functions. Mol Chem Neuropathol 29:181–191

    Article  Google Scholar 

  • Kumari V, Antonova E, Goyer MA, Ffytche D, Williamo SC, Sharma T (2006) A fMRI investigation of startle gating deficits in schizophrenia patients treated with typical or atypical antipsychotics. Int J Neuropsychopharmacol 10:463–477

    Article  PubMed  Google Scholar 

  • Lenzi A, Maltinti E, Poggi E, Fabrizio L, Coli E (2003) Effects of rivastigmine on cognitive function and quality of life in patients with schizophrenia. Clin Neuropharmacol 26:317–321

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Wilson W, Rose JE, Mcevoy J (1996) Nicotine-haloperidol interactions and cognitive performance in schizophrenics. Neuropsychopharmacol 15:429–436

    Article  CAS  Google Scholar 

  • Lima MJ, Tóth IV, Rangel AO (2005) A new approach for the sequential injection spectrophotometric determination of the total antioxidant activity. Talanta 15:207–213

    Article  Google Scholar 

  • Lodge DJ, Grace AA (2011) Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends Pharmacol Sci 32:507–513

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Mcgurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25:233–255

    Article  PubMed  CAS  Google Scholar 

  • Meyer U, Feldon J (2010) Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 90:285–326

    Article  PubMed  Google Scholar 

  • Mueser KT, Penn DL (2004) Meta-analysis examining the effects of social skills training on schizophrenia. Psychol Med 34:1365–1377

    Article  PubMed  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL, Snigdha S, Rajagopal L, Harte MK (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128:419–432

    Article  PubMed  CAS  Google Scholar 

  • Nelson CL, Burk JA, Bruno JP, Sarter M (2002) Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats. Psychopharmacol (Berl) 161(2):168–79

    Google Scholar 

  • Nieoullon A (2010) Acetylcholinesterase inhibitors in Alzheimer’s disease: further comments on their mechanisms of action and therapeutic consequences. Psychol Neuropsychiatr Vieil 8:123–131

    PubMed  Google Scholar 

  • Oda Y (1999) Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 49:921–937

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  PubMed  CAS  Google Scholar 

  • Perry W, Geyer MA, Braff DL (1999) Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Arch Gen Psychiatry 56:277–281

    Article  PubMed  CAS  Google Scholar 

  • Poirier MF, Canceil O, Baylé F, Millet B, Bourdel MC, Moatti C, Olié JP, Attar-Lévy D (2002) Prevalence of smoking in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 26:529–537

    Article  PubMed  Google Scholar 

  • Powchik P, Davidson M, Haroutunian V, Gabriel SM, Purohit DP, Perl DP, Harvey PD, Davis KL (1998) Postmortem studies in schizophrenia. Schizophr Bull 24:325–341

    Article  PubMed  CAS  Google Scholar 

  • Quevedo J, Moretto A, Colvero M, Roesler R, Ferreira MB (1997) The N-methyl-D-aspartate receptor blocker MK-801 prevents the facilitatory effects of naloxone and epinephrine on retention of inhibitory avoidance task in rats. Behav Pharmacol 8:471–474

    Article  PubMed  CAS  Google Scholar 

  • Ribeiz SR, Bassitt DP, Arrais JÁ, Avila R, Steffens DC, Bottino CM (2010) Cholinesterase inhibitors as adjunctive therapy in patients with schizophrenia and schizoaffective disorder: a review and meta-analysis of the literature. CNS Drugs 24:303–317

    Article  PubMed  CAS  Google Scholar 

  • Roesler R, Quevedo J, Schröder N (2003) NMDA receptors might be involved in the impairing effects of procyclidine on cognition. J Clin Psychopharmacol 23:666–668

    Article  PubMed  CAS  Google Scholar 

  • Rogers TS, Kashima Y (1998) Nurses’ responses to people with schizophrenia. J Adv Nurs 27:195–203

    Article  PubMed  CAS  Google Scholar 

  • Rogers A, Day JC, Williams B, Randall F, Wood P, Healy D, Bentall RP (1998) The meaning and management of neuroleptic medication: a study of patients with a diagnosis of schizophrenia. Soc Sci Med 47:1313–1323

    Article  PubMed  CAS  Google Scholar 

  • Rösler S, Behr J, Richter E (1999) N-acetylcysteine treatment lowers 4-aminobiphenyl haemoglobin adduct levels in non-smokers. Eur J Cancer Prev 8:469–472

    Article  PubMed  Google Scholar 

  • Sagud M, MihaL Jevic-Peles A, Muck-Seler D, Pivac N, Vuksan-Cusa B, Salgado JV, Hetem LA (2009) Experimental models of schizophrenia – a review. Rev Bras Psiquiatr 28:135–141

    Google Scholar 

  • Sarter M, Lustig C, Taylor SF (2012) Cholinergic contributions to the cognitive symptoms of schizophrenia and the viability of cholinergic treatments. Neuropharmacol 62:1544–1553

    Article  CAS  Google Scholar 

  • Schultz SH, North SW, Shields CG (2007) Schizophrenia: a review. Am Fam Physician 75:1821–1829

    PubMed  Google Scholar 

  • Sesack SR, Carr DB (2002) Selective prefrontal cortex inputs to dopamine cells: implications for schizophrenia. Physiol Behav 77:513–517

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Kour K, Jayaram MB (2012) Acetylcholinesterase inhibitors for schizophrenia. Cochrane Database Syst Rev 1, CD007967

    PubMed  Google Scholar 

  • Tariot PN, Salzman C, Yeung PP, Pultz J, Rak IW (2000) Long-term use of Quetiapine in elderly patients with psychotic disorders. Clin Ther 22:1068–1084

    Article  PubMed  CAS  Google Scholar 

  • Tzschentke TM, Schmidt WJ (2000) Differential effects of discrete subarea-specific lesions of the rat medial prefrontal cortex on amphetamine-and cocaine-induced behavioural sensitization. Cereb Cortex 10:488–498

    Article  PubMed  CAS  Google Scholar 

  • Williams JM, Ganghi KK (2008) Use of caffeine and nicotine in people with schizophrenia. Curr Drug Abuse Rev 1:155–161

    Article  PubMed  CAS  Google Scholar 

  • Winterer G (2010) Why do patients with schizophrenia smoke? Curr Opin Psychiatry 23:112–119

    Article  PubMed  Google Scholar 

  • Wolf DH, Gerraty R, Satterthwaite TD, Loughead J, Campellone T, Elliott MA, Turetsky BI, Gur RE (2011) Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia. Front Behav Neurosci 5:81

    Article  PubMed  Google Scholar 

  • Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637

    Article  PubMed  CAS  Google Scholar 

  • Yakel JL (2013) Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Arch in press

Download references

Financial Support

This Project was supported by L’Oreal, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade do Extremo Sul Catarinense (UNESC) and FAPESC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra I. Zugno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zugno, A.I., Julião, R.F., Budni, J. et al. Rivastigmine reverses cognitive deficit and acetylcholinesterase activity induced by ketamine in an animal model of schizophrenia. Metab Brain Dis 28, 501–508 (2013). https://doi.org/10.1007/s11011-013-9417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-013-9417-z

Keywords

Navigation