Skip to main content

Advertisement

Log in

Action needed for staple crops in the Andean-Amazon foothills because of climate change

  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

The Andean-Amazon foothills region, shaped by Andean moist forests and Amazon forests in southwestern Colombia, Napo province in Ecuador, and Ucayali Province and Napo Basin in Peru, provides local and global ecosystem services as food, water, world climate regulation, water purification, and carbon absorption. However, it faces major problems of land-use change that are exacerbated by climate change that affects these ecosystem services. For instance, conventional agriculture contribute to deforestation, soil degradation, and biodiversity loss, which might be further aggravated by climate change–induced droughts, thus reducing staple crop production and, consequently, food security. Cassava (Manihot esculenta Crantz), maize (Zea mays L.), and plantain (Musa paradisiaca L.) are major staple crops in the region. They play a key role for food security and local farmers’ income but are highly exposed to climate risks. This article aims to quantify the level of exposure to climate change (measured as climatic suitability) of these crops in the Andean-Amazon foothills by using the EcoCrop model by the 2030s, 2050s, and 2080s under Representative Concentration Pathway 2.6, 4.5, and 8.5 scenarios. EcoCrop results showed that, whereas cassava will not lose climatic suitability, maize will lose more than half of its current suitable area, and plantain will gain and lose area, which would affect local food security. Globally, these results are important in highlighting adaptive and cost-effective strategies in agriculture and suggest that agricultural crop diversification may improve resilience by promoting the use of local crops varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Institute of Hydrology, Meteorology and Environmental Studies (IDEAM)-Colombia, National Meteorology and Hydrology Service of Peru (SENAMHI), National Institute of Meteorology (INMET)-Brazil, National Institute of Meteorology and Hydrology (INAMHI)-Ecuador.

  2. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS).

  3. Agriculture Modern-Era Retrospective Analysis for Research and Applications (AgMERRA).

  4. Coupled Model Intercomparison Project Phase 5 (CMIP5)

References

  • Adams C, Ide T, Barnett J, Detges A (2018) Sampling bias in climate–conflict research. Nat Clim Chang 8(3):200–203. https://doi.org/10.1038/s41558-018-0068-2

    Article  Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev 35(3):869–890. https://doi.org/10.1007/s13593-015-0285-2

    Article  Google Scholar 

  • Arias JC, Ramos LA, Huaines F, Acosta LE, Camacho HA, Marín ZY (2005) Diversidad de yucas (Manihot esculenta Crantz) entre los Ticuna: Riqueza cultural y genética de un producto tradicional. Bogotá

  • Armenteras D, Rudas G, Rodriguez N, Sua S, Romero M (2006) Patterns and causes of deforestation in the Colombian Amazon. Ecol Indic 6(2):353–368. https://doi.org/10.1016/j.ecolind.2005.03.014

    Article  Google Scholar 

  • Baron C, Sultan B, Balme M, Sarr B, Traore S, Lebel T, Janicot S, Dingkuhn M (2005) From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact. Philos T R Soc B: Biol Sci 360(1463):2095–2108. https://doi.org/10.1098/rstb.2005.1741

    Article  Google Scholar 

  • Beddington J, Asaduzzaman M, Clark M, Fernández A, Guillou M, Jahn M, Erda L, Mamo T, Van Bo N, Nobre C, Scholes R, Sharma R, Wakhungu J (2012) Achieving food security in the face of climate change: final report from the commission on sustainable agriculture and climate change. Copenhagen, Denmark. Retrieved from www.ccafs.cgiar.org/commission. Accessed Aug 2019

  • Beltrán M, Navarro C, Sierra L, Romero M (2019) El futuro de la yuca, el plátano y el maíz en la Amazonía colombiana y peruana: Percepciones de las comunidades locales. Retrieved from https://amazonlandscapes.org/el-futuro-de-la-yuca-el-platano-y-el-maiz-en-la-amazonia-colombiana-y-peruana-percepciones-de-las-comunidades-locales/

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-M – part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720. https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Calero C (2011) Seguridad alimentaria en Ecuador desde un enfoque de acceso a alimentos (Abya Yala). Universidad Politécnica Salesiana, Quito

    Google Scholar 

  • Campanera-Reig M (2010) Tierras, Monte y Chacras (Primera Ed.). Lima: Biblioteca Nacional del Perú

  • Case M (2006) Climate change impacts in the Amazon: review of scientific literature. Retrieved from http://wwf.panda.org/wwf_news/?64240%2FClimate-Change-Impacts-in-the-Amazon-Review-of-scientific-literature. Accessed Aug 2019

  • Cavatassi R, Lipper L, Narloch U (2011) Modern variety adoption and risk management in drought prone areas: insights from the sorghum farmers of eastern Ethiopia. Agric Econ 42(3):279–292

    Article  Google Scholar 

  • Ceballos H, Ramirez J, Bellotti AC, Jarvis A, Alvarez E (2011) Adaptation of cassava to changing climates. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley and Blackwell, pp 411–425

  • CEPAL, Patrimonio Natural (2013) Amazonia posible y sostenible. Bogotá: Cepal y Patrimonio Natural. Retrieved from https://www.cepal.org/sites/default/files/news/files/amazonia_posible_y_sostenible.pdf. Accessed May 2019

  • Challinor AJ, Osborne T, Shaffrey L, Weller H, Morse A, Wheeler T, Vidale PL (2009) Methods and resources for climate impacts research. B Am Meteorol Soc 90(6):836–848. https://doi.org/10.1175/2008BAMS2403.1

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York. https://doi.org/10.1080/07341510601092191

    Chapter  Google Scholar 

  • Christensen JH, Kumar KK, Aldrian E, An S-I, Cavalcanti, IFA, Castro M de, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.028

  • CIAT (Centro Internacional de Agricultura Tropical) (2002) Project IP3: improved cassava for the developing world. Annual Report. Cali

  • CIAT (Centro Internacional de Agricultura Tropical) (2014) Evaluación de la vulnerabilidad al cambio climático de la agricultura y del recurso hídrico en los Andes de Colombia, Ecuador y Perú. Cali, Colombia. Retrieved from https://ccafs.cgiar.org/publications/evaluación-de-la-vulnerabilidad-al-cambio-climático-de-la-agricultura-y-del-recurso#.XNQ3Sdh7nIU. Accessed July 2016

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model – HadGEM2. Geosci Model Dev 4(4):1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19(5):643–674. https://doi.org/10.1175/jcli3629.1

    Article  Google Scholar 

  • Di Falco S, Chavas J-P (2009) On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. Am J Agric Econ 91(3):599–611. https://doi.org/10.1111/j.1467-8276.2009.01265.x

    Article  Google Scholar 

  • Dinerstein E, Olson DM, Graham DJ, Webster AL, Primm SA, Bookbinder MP, Ledec G (1995) A conservation assessment of terrestrial ecoregions of Latin America and the Caribbean. the World Bank, Washington, D.C

    Book  Google Scholar 

  • Dinerstein E, Olson DM, Joshi A, Vynne C, Burgess ND, Wikramanayake E, Hahn N, Palminteri S, Hedao P, Noss R, Hansen M, Locke H, Ellis EC, Jones B, Barber CV, Hayes R, Kormos C, Martin V, Crist E, Sechrest W, Price L, Baillie JEM, Weeden D, Suckling K, Davis C, Sizer N, Moore R, Thau D, Birch T, Potapov P, Turubanova S, Tyukavina A, de Souza N, Pintea L, Brito JC, Llewellyn OA, Miller AG, Patzelt A, Ghazanfar SA, Timberlake J, Klöser H, Shennan-Farpón Y, Kindt R, Lillesø JPB, van Breugel P, Graudal L, Voge M, al-Shammari KF, Saleem M (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67(6):534–545. https://doi.org/10.1093/biosci/bix014

    Article  Google Scholar 

  • Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin S-J, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Klein SA, Knutson TR, Langenhorst AR, Lee H-C, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J Clim 24(13):3484–3519. https://doi.org/10.1175/2011JCLI3955.1

    Article  Google Scholar 

  • Dufresne J, Foujols M, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. https://doi.org/10.1007/s00382-012-1636-1

    Article  Google Scholar 

  • Eitzinger A, Läderach P, Carmona S, Navarro C, Collet L (2013) Prediction of the impact of climate change on coffee and mango growing areas in Haiti. Full Technical Report. Centro Internacional de Agricultura Tropical (CIAT). Cali, Colombia

  • Eitzinger A, Läderach P, Bunn C, Quiroga A, Benedikter A, Pantoja A, Gordon J, Bruni M (2014) Implications of a changing climate on food security and smallholders’ livelihoods in Bogotá, Colombia. Mitig Adapt Strat Gl 19(2):161–176. https://doi.org/10.1007/s11027-012-9432-0

    Article  Google Scholar 

  • Emck P (2007) A climatology of South Ecuador - with special focus on the major Andean ridge as Atlantic-Pacific climate divide. Dissertation, Friedrich-Alexander-University of Erlangen-Nürnber

  • Espinoza-Villar JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29(11):1574–1594. https://doi.org/10.1002/joc.1791

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2011) The state of Forestsin the Amazon Basin, Congo Basin and Southeast Asia. A report prepared for the Summit of the Three Rainforest Basins Brazzaville, Republic of Congo. http://www.fao.org/3/i2247e/i2247e00.pdf

  • FAO, IAEA (Food and Agriculture Organization of the United Nations and International Atomic Energy Agency) (2012) Food Security & Staple Crops. Bulletin 53–3. https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull53-3/53305711111.pdf. Accessed June 2019

  • Fernandes L, Nereu T, Streck A, Thirza A, Santos L (2017) Estimating cassava yield in future IPCC climate scenarios for the Rio Grande do Sul State, Brazil. Cienc Rural 47:1–10. https://doi.org/10.1590/0103-8478cr20160315

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data 2. Retrieved from https://www.nature.com/articles/sdata201566.pdf. Accessed March 2017

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11. https://doi.org/10.5194/adgeo-22-3-2009

    Article  Google Scholar 

  • GBIF.org (2017) GBIF Home Page. Available from https://www.gbif.org/

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24(19):4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Gloor M, Barichivich J, Ziv G, Brienen R, Schöngart J, Peylin P, Ladvocat Cintra BB, Feldpausch T, Phillips O, Baker J (2015) Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Global Biogeochem Cy 29(9):1384–1399. https://doi.org/10.1002/2014GB005080

    Article  Google Scholar 

  • Gratelly Silva PA (2011) Vulnerabilidad de los cultivos agrícolas en suelos aluviales por efectos del cambio climático en el departamento de Loreto. Conocimiento Amazόnico 2(2):125–136

    Google Scholar 

  • Hawkins E, Osborne TM, Ho CK, Challinor AJ (2012) Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric For Meteorol 170:19–31. https://doi.org/10.1016/j.agrformet.2012.04.007

    Article  Google Scholar 

  • Hernández OL, Naranjo LG (2007) Escenarios de conservación en el piedemonte Andino-Amazónico de Colombia. In: Barrera X, Constantino E, Espinosa JC, Hernández OL, Naranjo LG, Niño I, Polanco R, Restrepo JH, Revelo-Salazar JV, Salazar C, Yepes F (eds) Geografía del piedemonte andino-amazónico (Primera Ed., pp. 8–13). WWF Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Unidad de Parques Nacionales Naturales de Colombia Retrieved from http://www.researchgate.net/publication/265467440_Geografa_del_piedemonte_andino-amaznico. Accessed March 2016

  • Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Res Newsl 127:15–19. https://doi.org/10.1016/j.compositesa.2008.10.018

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hoffmann C, García-Márquez JR, Krueger T (2018) A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 77:379–391. https://doi.org/10.1016/j.landusepol.2018.04.043

    Article  Google Scholar 

  • Huamán-Espino L, Valladares EC (2006) Estado nutricional y características del consumo alimentario de la población Aguaruna. Rev Peru Med Exp Salud Publica 23(1):12–21

    Google Scholar 

  • Hunter R, Crespo O (2019) Large scale crop suitability assessment under future climate using the EcoCrop model: the case of six provinces in Angola’s Planalto region. In: Rosenstock T, Nowak A, Girvetz E (eds) The climate-smart agriculture papers. Springer, Cham, pp 201–213. https://doi.org/10.1007/978-3-319-92798-5

    Chapter  Google Scholar 

  • Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The community earth system model: a framework for collaborative research. B Am Meteorol Soc 94(9):1339–1360. https://doi.org/10.1175/BAMS-D-12-00121.1

    Article  Google Scholar 

  • Hutchinson MF, de Hoog FR (1985) Smoothing noisy data with spline functions. Numer Math 47:99–106

    Article  Google Scholar 

  • ICBF (Instituto Colombiano de Bienestar Familiar) and FAO (Food and Agriculture Organization of the United Nations) (2015) Guías Alimentarias Basadas en Alimentos para la población colombiana mayor de 2 años. Colombia

  • IDEAM, PNUD, MADS, DNP, Cancillería (Instituto de Hidrología, Meteorología y Estudios Ambientales, Programa de las Naciones Unidas para el Desarrollo, Ministerio de Ambiente y Desarrollo Sostenible, Departamento Nacional de Planeaciόn, and Chancellery) (2015) Nuevos Escenarios de Cambio Climático para Colombia 2011–2100 Herramientas Científicas para la Toma de Decisiones – Enfoque Nacional – Departamental: Tercera Comunicación Nacional de Cambio Climático

  • INEC (Instituto Nacional de Estadística y Censos) (2017) Encuesta de superficie y producción agropecuaria continua (ESPAC) 2017, Ecuador. http://www.ecuadorencifras.gob.ec/encuesta-de-superficie-y-produccion-agropecuaria-continua-bbd/. Accessed July 2019

  • INEI (Instituto Nacional de Estadística e Informática) (2012) IV Censo Nacional Agropecuario 2012 Perú. Retrieved from http://censos.inei.gob.pe/cenagro/tabulados/?id=CensosNacionales

  • INEI (Instituto Nacional de Estadística e Informática) (2014). Encuesta Demográfica y de Salud Familiar - ENDES 2014. Lima, Peru

  • IPCC (Intergovernmental Panel on Climate Change) (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York Retrieved from https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Frontmatter_FINAL.pdf

    Google Scholar 

  • Iversen T, Bentsen M, Bethke I, Debernard JB, Kirkevåg A, Seland Ø, Drange H, Kristjansson JE, Medhaug I, Sand M, Seierstad IA (2013) The Norwegian Earth System Model, NorESM1-M – part 2: climate response and scenario projections. Geosci Model Dev 6(2):389–415. https://doi.org/10.5194/gmd-6-389-2013

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data v4. International Center for Tropical Agriculture (CIAT)

  • Jarvis A, Ramirez-Villegas J, Herrera Campo B, Navarro-Racines C (2012) Is cassava the answer to African climate change adaptation? Trop Plant Biol 5(1):9–29. https://doi.org/10.1007/s12042-012-9096-7

    Article  Google Scholar 

  • Laraque A, Ronchail J, Cochonneau G, Pombosa R, Guyot JL (2007) Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. J Hydrometeorol 8(6):1364–1381. https://doi.org/10.1175/2007JHM784.1

    Article  Google Scholar 

  • Laurance WF (1998) A crisis in the making: responses of Amazonian forests to land use and climate change. Trends Ecol Evol 13(10):411–415. https://doi.org/10.1016/S0169-5347(98)01433-5

    Article  Google Scholar 

  • Lavado WS, Labat D, Ronchail J, Espinoza JC, Guyot JL (2012) Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965-2007). Hydrol Process. https://doi.org/10.1002/hyp.9418

  • Lavell A, Oppenheimer M, Diop C, Hess J, Lempert R, Li J, Muir-Wood R, Myeong S (2012) Climate change: new dimensions in disaster risk, exposure, vulnerability, and resilience. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the IPCC. Cambridge University Press, Cambridge and New York, pp 25–64. https://doi.org/10.1017/CBO9781139177245

    Chapter  Google Scholar 

  • Llopart M, Coppola E, Giorgi F, da Rocha RP, Cuadra SV (2014) Climate change impact on precipitation for the Amazon and La Plata basins. Clim Chang 125(1):111–125. https://doi.org/10.1007/s10584-014-1140-1

    Article  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697. https://doi.org/10.1104/pp.112.208298

    Article  Google Scholar 

  • Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S (2014) Central and South America. In: Barros VR, Field CB, Dokken D, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1499–1566

    Google Scholar 

  • Marengo JA, Williams ER, Alves LM, Soares WR, Rodriguez DA (2016) Extreme seasonal climate variations in the Amazon Basin: droughts and floods. In: Nagy L, Forsberg BR, Artaxo P (eds) Interactions between biosphere, atmosphere and human land use in the Amazon Basin. Ecological Studies (Analysis and Synthesis). Springer, Berlin, Heidelberg, pp 55–76. https://doi.org/10.1007/978-3-662-49902-3_4

    Chapter  Google Scholar 

  • Martin G, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4(3):723–757. https://doi.org/10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga E, Sapkota PT, Tubiello FN, Xu Y (2019) Food Security. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, Zhai P, Slade R, Connors S, van Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal Pereira J, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems In press

    Google Scholar 

  • Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29(7):897–910. https://doi.org/10.1175/JTECH-D-11-00103.1

    Article  Google Scholar 

  • Miles L, Grainger A, Phillips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13:553–565. https://doi.org/10.1111/j.1466-822X.2004.00105.x

    Article  Google Scholar 

  • MINAGRI (Ministerio de Agricultura y Riego del Perú) (2019) Superficies perdidas y superficies afectadas por departamento según principales cultivos - Campaña Agrícola 2018–2019. Dirección de Estadísticas Agrarias, MINAGRI

  • Ministerio de Agricultura Colombia (2016a) AGRONET: Área, producción, rendimiento y participación municipal en el departamento por cultivo. Retrieved from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=4

  • Ministerio de Agricultura Colombia (2016b) AGRONET: Participación departamental en la producción de cultivos y en el área cosechada. Retrieved from https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=2

  • MinSalud Colombia, OSAN, & FAO (2014) Informe técnico de subsistema de información de alertas en seguridad alimentaria y nutricional

  • Molina Recio G, Moreno Rojas R, García Rodríguez M, Vaquero Abellán M (2016) Nutritional assessment of the most frequently consumed dishes in a slum in Iquitos, Peruvian Amazon. Nutr Hosp 33(1):70–79

    Article  Google Scholar 

  • Müller C, Robertson RD (2014) Projecting future crop productivity for global economic modeling. Agric Econ 45(1):37–50. https://doi.org/10.1111/agec.12088

    Article  Google Scholar 

  • NCDC (2011) State of the climate reports. Retrieved from National Centers for Environmental Information: https://www.ncdc.noaa.gov/sotc/. Accessed Sept 2018

  • Nobre CA, Gilvan S, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M (2016) Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc Natl Acad Sci U S A 113(39):10759–10768. https://doi.org/10.1073/pnas.1605516113

    Article  Google Scholar 

  • Ortiz R, Nowak A, Lavado A, Parker L (2013) Food security in Amazonia. Report for Global Canopy Programme and International Center for Tropical Agriculture as Part of the Amazonia Security Agenda Project, (August), 89. Retrieved from http://segamazonia.org/sites/default/files/press_releases/food_security_in_amazonia.pdf. Accessed March 2018

  • Peña-Venegas CP, Stomph TJ, Verschoor G, Echeverri JA, Struik PC (2016) Classification and use of natural and anthropogenic soils by indigenous communities of the upper Amazon region of Colombia. Hum Ecol 44(1):1–15. https://doi.org/10.1007/s10745-015-9793-6

    Article  Google Scholar 

  • Prüssmann J, Suarez C, Guevara O, Analiz V (2016) Análisis de vulnerabilidad y riesgo climático del bioma amazónico y sus áreas protegidas. Proyecto “Visión amazónica: áreas protegidas, soluciones naturales al cambio climático. Cali, Colombia

  • Qiao F, Song Z, Bao Y, Song Y, Shu Q, Huang C, Zhao W (2013) Development and evaluation of an earth system model with surface gravity waves. J Geophys Res-Oceans 118(9):4514–4524. https://doi.org/10.1002/jgrc.20327

    Article  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cy 22(1):GB1003. https://doi.org/10.1029/2007gb002952

    Article  Google Scholar 

  • Ramirez-Cabral NYZ, Kumar L, Shabani F (2017) Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci Rep 7(1):5910. https://doi.org/10.1038/s41598-017-05804-0

    Article  Google Scholar 

  • Ramirez-Villegas, J., Jarvis, A (2010). Downscaling global circulation model outputs: the delta method. Decision and policy analysis working paper no. 1. Decision and policy analysis working papers. Cali, Colombia: International Center for Tropical Agriculture (CIAT) Retrieved from http://gisweb.ciat.cgiar.org/GCMPage/docs/Downscaling-WP-01.pdf. Accessed Nov 2017

  • Ramirez-Villegas J, Thornton PK (2015) Climate change impacts on African crop production. CCAFS working paper no. 119. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Retrieved from www.ccafs.cgiar.org. Accessed Feb 2018

  • Ramirez-Villegas J, Jarvis A, Van Den Bergh I, Staver C, Turner D (2011a) Changing climates: effects on growing conditions for Banana and plantain (Musa spp.) and possible responses. In: Yadav SS, Redden RJ, Jerry HL, Hermann L-C, Hall AE (eds) Crop adaptation to climate change. Wiley and Blackwell

  • Ramirez-Villegas J, Jarvis A, Läderachd P (2011b) Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum. Agric For Meteorol 170:67–68. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  • Rippke U, Ramirez-Villegas J, Jarvis A, Vermeulen SJ, Parker L, Mer F, Diekkrüger B, Challinor AJ, Howden M (2016) Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nat Clim Chang 6(6):605–609. https://doi.org/10.1038/nclimate2947

    Article  Google Scholar 

  • Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations. Atmos Chem Phys 12(14):6377–6404. https://doi.org/10.5194/acp-12-6377-2012

    Article  Google Scholar 

  • RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston http://www.rstudio.com/. Accessed Aug 2019

  • Ruane AC, Goldberg R, Chryssanthacopoulos J (2015) Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric For Meteorol 200:233–248. https://doi.org/10.1016/j.agrformet.2014.09.016

    Article  Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153–192. https://doi.org/10.1175/jcli3612.1

    Article  Google Scholar 

  • Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen Y-H, Cheng Y, Clune TL, Del Genio A, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO, Perlwitz JP, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed RA, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao M-S, Zhang J (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Sy 6(1):141–184. https://doi.org/10.1002/2013MS000265

    Article  Google Scholar 

  • Semwal D, Pradheep K, Ahlawat S (2016) Wild rice (Oryza spp.) germplasm collections from Gangetic Plains and eastern region of India: diversity mapping and habitat prediction using EcoCrop model. Vegetos 29(4):96. https://doi.org/10.5958/2229-4473.2016.00106.3

    Article  Google Scholar 

  • Sherman M, Ford J, Llanos-Cuentas A, Valdivia MJ (2016) Food system vulnerability amidst the extreme 2010–2011 flooding in the Peruvian Amazon: a case study from the Ucayali region. Food Secur 8(3):551–570. https://doi.org/10.1007/s12571-016-0583-9

    Article  Google Scholar 

  • SINCHI (Instituto de Investigaciones Amazónicas) (2016) Sistema de Información Ambiental Territorial de la Amazonía Colombiana (SIAT-AC): Cobertura de la tierra 2016. Retrieved from http://datos.siatac.co/datasets/bd3dd9415672403690e96e7b013be56a_0/geoservice?geometry=-80.619%2C-0.574%2C-68.172%2C3.27

  • Smith P, House JI, Bustamante M, Sobocká J, Harper R, Pan G, West PC, Clark JM, Adhya T, Rumpel C, Paustian K, Kuikman P, Cotrufo MF, Elliott JA, Mcdowell R, Griffiths RI, Asakawa S, Bondeau A, Jain AK, Meersmans J, Pugh TAM (2016) Global change pressures on soils from land use and management. Glob Chang Biol 22(3):1008–1028. https://doi.org/10.1111/gcb.13068

    Article  Google Scholar 

  • Sorribas MV, Paiva RCD, Melack JM, Bravo JM, Jones C, Carvalho L, Beighley E, Forsberg B, Costa MH (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Chang 136(3–4):555–570. https://doi.org/10.1007/s10584-016-1640-2

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93:1–39. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215. https://doi.org/10.1016/j.agrformet.2011.09.002

    Article  Google Scholar 

  • Tesfaye K, Gbegbelegbe S, Cairns JE, Shiferaw B, Prasanna BM, Sonder K, Boote K, Makumbi D, Robertson R (2015) Maize systems under climate change in sub-Saharan Africa. Int J Clim Chang Str 7(3):247–271. https://doi.org/10.1108/IJCCSM-01-2014-0005

    Article  Google Scholar 

  • Tripathi A, Tripathi DK, Chauhan DK, Kumar N, Singh GS (2016) Paradigms of climate change impacts on some major food sources of the world: a review on current knowledge and future prospects. Agric Ecosyst Environ 216:356–373. https://doi.org/10.1016/j.agee.2015.09.034

    Article  Google Scholar 

  • Vicaría Sur (2018) In: Jaimes D, Vélez G, Sánchez V (eds) Agrobiodiversidad en el sur del Caquetá. La Cajuela, Caquetá. https://doi.org/10.13140/RG.2.1.2472.2082

    Chapter  Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335. https://doi.org/10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4(4):845–872. https://doi.org/10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Wobbrock JO, Findlater L, Gergle D, Higgins JJ (2011) The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 143–146. https://doi.org/10.1145/1978942.1978963

  • Wu T (2012) A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations. Clim Dyn 38(3–4):725–744. https://doi.org/10.1007/s00382-011-0995-3

    Article  Google Scholar 

  • Xin X, Wu T, Li JF, Wang Z, Li W (2012) How well does BCC_CSM1.1 reproduce the 20th century climate change over China? Atmos Oceanic Sci Lett 6(1):1–26

    Google Scholar 

  • Xin X, Zhang L, Zhang J, Wu T, Fang Y (2013) Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. J Meteorol Soc Jpn 91(4):413–429. https://doi.org/10.2151/jmsj.2013-401

    Article  Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka T, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute-Earth System Model v1 (MRI-ESM1)—model description. Ibaraki

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3 & mdash; model description and basic performance & mdash. J Meteorol Soc Jpn 90A:23–64. https://doi.org/10.2151/jmsj.2012-A02

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the Sustainable Amazonian Landscapes (SAL) project, which is part of the International Climate Initiative (IKI). The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) supports this initiative on the basis of a decision adopted by the German Bundestag. The project is led by the International Center of Tropical Agriculture (CIAT) and implemented together with the Potsdam Institute for Climate Impact Research (PIK) in Germany, the Center for Research on Sustainable Systems of Agricultural Production (CIPAV), Instituto Amazónico de Investigaciones Científicas (SINCHI), Universidad de la Amazonía in Colombia, Instituto de Investigaciones de la Amazonía Peruana (IIAP), and Universidad Nacional Agraria La Molina (UNALM) from Peru. This work contributes to the CGIAR Research Program on Water, Land and Ecosystems (WLE). This study is part of the Ph.D. dissertation of Lucila Marcela Beltrán Tolosa at the Universidad Nacional de Colombia (sede Palmira), that was supported by the Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología (COLCIENCIAS). We are grateful to Nora Castañeda, who helped to design the study, and to Dennis del Castillo, Jorge Parra, and John Ocampo, who collaborated with the manuscript reviewing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucila Marcela Beltrán-Tolosa.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Cross-validation of the interpolated monthly surfaces for accumulated precipitation (a and d), maximum temperature (b and e), and minimum temperature (c and f). Graphs a-d shows the variation in the coefficient of determination (R2) and d-f the root mean square error (RMSE). Dotted red line represents a R2 of 0.75 in graphs a,b and c. The dotted red line represents half of the highest value, and the solid red continuous line represents three quarters of the highest value in graphs d, e and f. (RStudio Team 2015) (PNG 86 kb)

High Resolution Image (TIF 230 kb)

ESM 2

Projected changes in seasonal rainfall for the Andean-Amazon foothills (AAF) region, toward the 2030s (top), 2050s (middle), and 2080s (bottom) for RCP 8.5. DJF (December–January-February), MAM (March-April-May), JJA (June-July-August), SON (September, October, November) quarters. ArcMap 10.5 (http://desktop.arcgis.com/en/arcmap) (PNG 258 kb)

High Resolution Image (TIF 529 kb)

ESM 3

Projected changes in seasonal minimum temperature for the Andean-Amazon foothills toward the 2030s (top), 2050s (middle), and 2080s (bottom) for RCP 8.5. DJF (December–January-February), MAM (March-April-May), JJA (June-July-August), SON (September, October, November) quarters. ArcMap 10.5 (http://desktop.arcgis.com/en/arcmap) (PNG 171 kb)

High Resolution Image (TIF 380 kb)

ESM 4

Projected changes in seasonal maximum temperature for the Andean-Amazon foothills toward the 2030s (top), 2050s (middle), and 2080s (bottom) for RCP 8.5. DJF (December–January-February), MAM (March-April-May), JJA (June-July-August), SON (September, October, November) quarters. ArcMap 10.5 (http://desktop.arcgis.com/en/arcmap) (PNG 184 kb)

High Resolution Image (TIF 404 kb)

ESM 5

Current and future climate suitability based only on precipitation of the three selected crops, cassava, maize, and plantain, in the Andean-Amazon foothills (AAF) region, modeled in EcoCrop. Red represents low suitability and green represents high suitability. ArcMap 10.5 (http://desktop.arcgis.com/en/arcmap) (PNG 232 kb)

High Resolution Image (TIF 430 kb)

ESM 6

Current and future climate suitability based only on temperature of the three selected crops, cassava, maize, and plantain, in the Andean-Amazon foothills (AAF) region, modeled in EcoCrop. Red represents low suitability and green represents high suitability. ArcMap 10.5 (http://desktop.arcgis.com/en/arcmap) (PNG 269 kb)

High Resolution Image (TIF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán-Tolosa, L.M., Navarro-Racines, C., Pradhan, P. et al. Action needed for staple crops in the Andean-Amazon foothills because of climate change. Mitig Adapt Strateg Glob Change 25, 1103–1127 (2020). https://doi.org/10.1007/s11027-020-09923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-020-09923-4

Keywords

Navigation