Skip to main content

Advertisement

Log in

Synthesis, reactivity, and biological activity of 5-aminouracil and its derivatives

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The synthesis and reactions of 5-aminouracil and its derivatives are comprehensively reviewed. A brief survey of biological activities, especially chemotherapeutic and pharmacological properties, is also reported.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Scheme 2
Fig. 12
Fig. 13
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 14
Fig. 15
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Fig. 16
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73

Similar content being viewed by others

References

  1. Wamhoff H, Dzenis J, Hirota K (1992) Uracils: versatile starting materials in heterocyclic synthesis. Adv Heterocycl Chem 55:129–259. doi:10.1016/S0065-2725(08)60222-6

    Article  CAS  Google Scholar 

  2. Putz MV, Dudaş NA (2013) Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives’ anti-HIV action. Struct Chem 24:1873–1893. doi:10.1007/s11224-013-0249-6

    Article  CAS  Google Scholar 

  3. Danishefsky S, Barbachyn M (1985) A fully synthetic route to tunicaminyluracil. J Am Chem Soc 107:7761–7762. doi:10.1021/ja00311a089

    Article  CAS  Google Scholar 

  4. Gazivoda T, Raic’-Malic’ S, Marjanovic’ M, Kralj M, Pavelic’ K, Balzarini J, De Clercq E, Mintas M (2007) The novel C-5 aryl, alkenyl, and alkynyl substituted uracil derivatives of L-ascorbic acid: synthesis, cytostatic, and antiviral activity evaluations. Bioorg Med Chem 15:749–758. doi:10.1016/j.bmc.2006.10.046

    Article  PubMed  CAS  Google Scholar 

  5. Heidelberger C (1984) In: Holand JF, Frei E (eds) Pyrimidine and pyrimidine antimetabolites in cancer medicine. Lea and Febiger, Philadelphia, pp 801–824

  6. Kulikowski T (1994) Structure-activity relationships and conformational features of antiherpetic pyrimidine and purine nucleoside analogues. Pharm World Sci 16:127–138. doi:10.1007/BF01880663

    Article  PubMed  CAS  Google Scholar 

  7. Isobe Y, Tobe M, Inoue Y, Isobe M, Tsuchiya M, Hayashi H (2003) Structure and activity relationships of novel uracil derivatives as topical anti-inflammatory agents. Bioorg Med Chem 11:4933–4940. doi:10.1016/j.bmc.2003.09.012

    Article  PubMed  CAS  Google Scholar 

  8. Baraldi PG, Romagnoli R, Guadix AE, Pineda de las Infantas MJP, Gallo MA, Espinosa A, Martinez A, Bingham JP, Hartley JA (2002) Design, synthesis, and biological activity of hybrid compounds between uramustine and DNA minor groove binder distamycin A. J Med Chem 45:3630–3638. doi:10.1021/jm011113b

    Article  PubMed  CAS  Google Scholar 

  9. Seferoglu Z, Ertan N (2008) Synthesis, characterization and spectroscopic properties of some new phenylazo-6-aminouracil. Cent Eur J Chem 6:81–88. doi:10.2478/s1132.007.0062-4

    Article  CAS  Google Scholar 

  10. Lee BH, Shin JH, Lim MK (1997) Partition property of 5-nitrothiopyrimidine nucleoside. Bull Korean Chem Soc 18:734–736

    CAS  Google Scholar 

  11. Rana VS, Ganesh KN (2000) Recognition of 5-aminouracil \((\text{ U }^{1})\) # in the central strand of a DNA triplex: orientation selective binding of different third strand bases. Nucleic Acids Res 28:1162–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Medoff G, Swartz MN (1969) Induction of a defective phage and DNA methylation in Escherichia coli \(15_{{\rm T}}^{-}\). J Gen Virol 4:15–27

    Article  PubMed  CAS  Google Scholar 

  13. Zielenkiewicz W, Poznanski J, Zielenkiewicz A (2000) Partial molar volumes of aqueous solutions of some halo and amino derivatives of uracil. J Solut Chem 29:757–769

    Article  CAS  Google Scholar 

  14. Smith HH, Fussell CP, Kugoelman BH (1963) Partial synchronization of nuclear divisions in root meristems with 5-aminouracil. Science 142:595–596. doi:10.1126/science.142.3592.595

    Article  PubMed  CAS  Google Scholar 

  15. Oliev R (1994) Response to auxin by cells of Riella helicophylla during reversible arrest in different cell-cycle phases. Planta 194:510–515

    Article  CAS  Google Scholar 

  16. Cheng CC, Roth B (1982) Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines. Prog Med Chem 19:269–331

    Article  PubMed  Google Scholar 

  17. Singh SJ (2008) Laser Raman and infra-red spectra of biomolecule: 5-aminouracil. J Phys 70:479–486

    CAS  Google Scholar 

  18. Bányász A, Karpati S, Mercier Y, Reguero M, Gustavsson T, Markovitsi D, Improta R (2010) The peculiar spectral properties of amino-substituted uracils: a combined theoretical and experimental study. J Phys Chem B 114:12708–12719. doi:10.1021/jp105267q

    Article  PubMed  CAS  Google Scholar 

  19. Palafox MA, Tardajos G, Guerrero-Martínez A, Rastogi VK, Mishra D, Ojha SP, Kiefer W (2007) FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular geometry of biomolecule 5-aminouracil. Chem Phys 340:17–31. doi:10.1016/j.chemphys.2007.07.032

    Article  CAS  Google Scholar 

  20. Bednarek E, Dobrowolski JCz, Dobrosz-Teperek K, Sitkowski J, Kozerski L, Lewandowski W, Mazurek AP (1999) Theoretical and experimental \(^{1}\text{ H }, ^{13}\text{ C }, ^{15}\text{ N }\), and \(^{17}\text{ O }\) NMR spectra of 5-nitro, 5-amino, and 5-carboxy uracils. J Mol Struct 482–483:333–337

    Article  Google Scholar 

  21. Johnson TB, Hahn DA (1933) Pyrimidines: their amino and aminooxy derivatives. Chem Rev 13:193–303. doi:10.1021/cr60045a002

    Article  CAS  Google Scholar 

  22. Johnson TB, Matsuo I (1919) Researches on pyrimidines. LXXXVII. Alkylation of 5-amino-uracil. J Am Chem Soc 41:782–789. doi:10.1021/ja02226a011

    Article  CAS  Google Scholar 

  23. Bogert MT, Davidson D (1933) The preparation of 5-aminouracil and of some of its derivatives. J Am Chem Soc 55:1667–1668. doi:10.1021/ja01331a059

    Article  CAS  Google Scholar 

  24. Güetschow M, Hecker T, Thiele A, Hauschildt S, Eger KJ (2001) Aza analogues of thalidomide: synthesis and evaluation as inhibitors of tumor necrosisfactor-\(\alpha \) production in vitro. Bioorg Med Chem 9:1059–1065. doi:10.1016/S0968-0896(00)00323-0

    Article  Google Scholar 

  25. Roberts M, Visser DW (1952) Uridine and cytidine derivatives. J Am Chem Soc 74:668–669. doi:10.1021/ja01123a026

    Article  CAS  Google Scholar 

  26. Friedland M, Visser DW (1961) Studies on 5-aminodeoxyuridine. Biochim Biophys Acta (Amst.) 51:148–152

    Article  CAS  Google Scholar 

  27. Visser DW (1968) 5-Hydroxyuridine. In: Zorbach WW, Tipson RS (eds) Synthetic procedures in nucleic acid chemistry, vol 1. Wiley, New York, pp 428–430

    Google Scholar 

  28. Chern JW, Wise DS, Butler W, Townsend LB (1988) Synthesis of 5-substituted uracils, uridines and 2’-deoxyuridine analogs. J Org Chem 53:5622–5628. doi:10.1021/jo00259a005

    Article  CAS  Google Scholar 

  29. Wempen I, Doerr IL, Kaplan L, Fox JJ (1960) Pyrimidine nucleosides. VI. Nitration of nucleosides. J Am Chem Soc 82:1624–1629. doi:10.1021/ja01492a027

    Article  CAS  Google Scholar 

  30. Zajac MA, Zakrzewski AG, Kowal MG, Narayan S (2003) A novel method of caffeine synthesis from uracil. Synth Commun 19:3291–3297. doi:10.1081/SCC-120023986

    Google Scholar 

  31. Ishiyama H, Nakajima H, Nakata H, Kobayashi J (2009) Synthesis of hybrid analogues of caffeine and eudistomin D and its affinity for adenosine receptors. Bioorg Med Chem 17:4280–4284. doi:10.1016/j.bmc.2009.05.036

    Article  PubMed  CAS  Google Scholar 

  32. Phillps AP (1951) Some 5-substituted aminouracils. J Am Chem Soc 73:1061–1062. doi:10.1021/ja01147a051

    Article  Google Scholar 

  33. Benitez A, Ross LO, Goodman L, Baker BR (1960) Potential anticancer agents. XXXVI. Alkylating agents derived from 5-aminouracil. J Am Chem Soc 82:4585–4591. doi:10.1021/ja01502a036

    Article  CAS  Google Scholar 

  34. Johnson TB, Clapp SH (1908) IX. Researches on pyrimidins: syntheses of some nitrogen-alkyl derivatives cytosin, thymin and uracil. J Biol Chem 5:49–70

    Google Scholar 

  35. Visser DW, Kabat S, Lieb M (1963) Synthesis and biological activity of methylaminodeoxyuridine and dimethylaminodeoxyuridine. Biochim Biophys Acta 76:463–465

    Article  PubMed  CAS  Google Scholar 

  36. Kabat S, Visser DW (1964) The incorporation of aminodeoxyuridine into deoxyribonucleic acid of Escherichia coli \(15\,\text{ T }-\). Biochim Biophys Acta (Amst.) 82:680–681

    CAS  Google Scholar 

  37. Shen TY, McPherson JF, Linn BO (1966) Nucleosides. III. Studies on 5-methylamino-2’-deoxyuridine as a specific antiherpes agent. J Med Chem 9:366–369. doi:10.1021/jm00321a025

    Article  PubMed  CAS  Google Scholar 

  38. Boncel S, Gondela A, Mączka M, Tuszkiewicz-Kuźnik M, Grec P, Hefczyc B, Walczak K (2011) Novel 5-(\(N\)-alkylaminouracil) acyclic nucleosides. Synthesis 4:603–610. doi:10.1055/s-0030-1258397

    Google Scholar 

  39. Otter BA, Taube A, Fox JJ (1971) Pyrimidines. XI. Conversion of 5-hydroxyuracils into 6-alkyluracils via Claisen rearrangements. J Org Chem 36:1251–1255. doi:10.1021/jo00808a019

    Article  PubMed  CAS  Google Scholar 

  40. Novikov MS, Buckheit JRW, Temburnikar K, Khandazhinskaya AL, Ivanov AV, Seley-Radtke KL (2010) 1-Benzyl derivatives of 5-(arylamino)uracils as anti-HIV-1 and anti-EBV agents. Bioorg Med Chem 18:8310–8314. doi:10.1016/j.bmc.2010.09.070

    Article  PubMed  CAS  Google Scholar 

  41. Arterburn JB, Pannala M, Gonzalez AM (2001) Catalytic amination of 5-iodouracil derivatives. Tetrahedron Lett 42:1475–1477. doi:10.1016/s0040-4039(00)02315-7

    Article  CAS  Google Scholar 

  42. Maduskuie TP (2003) Uracil Derivatives as Inhibitors of TNF-alpha converting enzyme (TACE) and matrix metalloproteinases. US2003/0229081 A1, pp 16–17

  43. Aoun R, Renaud JL, Dixneuf PH, Bruneau C (2005) Concomitant monoreduction and hydrogenation of unsaturated cyclic imides to lactams catalyzed by ruthenium compounds. Angew Chem Int Ed 44:2021–2023. doi:10.1002/anie.200462996

    Article  CAS  Google Scholar 

  44. Behrend O, Offe G (1907) Ueber die Oxydation von Uracilderivaten. Liebigs Ann 353:267–283. doi:10.1002/jlac.19073530302

    Article  CAS  Google Scholar 

  45. Behrend R, Roosen O (1889) Synthese der Harnsäure. Liebigs Ann 254:235–256. doi:10.1002/jlac.18892510109

    Article  Google Scholar 

  46. Irwin WJ, Wibberley DJ (1967) Synthesis of pyrido[3,2-\(d\)]pyrimidines from 5-aminopyrimidines. J Chem Soc (C) 1745–1750

  47. Krutikov VI, Erkin AV (2009) 5-Arylideneaminouracils: II. Synthesis of sodium and ammonium salts. Russ J Gen Chem 79:991–995. doi:10.1134/S1070363209050211

    Article  CAS  Google Scholar 

  48. Mazumder G, De M, Mazumder SK, Mukhopadhyay A (2001) Oxonium 5-aminouracil-6-sulfonate hydrate. Acta Crystallogr C57:562–563

    CAS  Google Scholar 

  49. Abdullah Z, Waldron N (2004) Synthesis and fluorescence studies of 5-chlorothiazolo[5,4-\(d\)]pyrimidine. Malays J Chem 6:114–117

    Google Scholar 

  50. McCarthy JR, Xie YF, Whitten JP, Webb TR, Chen C, Ramphal JY (1998) CRF receptor antagonists and methods relating thereto. US005795905, A1, p 19

  51. Hurst DK (1984) The synthesis and some reactions of chloropyrimidines. Heterocycles 22:79–84. doi:10.3987/R-1984-01-0079

    Article  CAS  Google Scholar 

  52. McCarthy JR, Xie YF, Jeffrey PW, Webb TR, Chen C, Ramphal JY (1998) CRF receptor antagonists and methods relating thereto. US5795905 A1

  53. Krische MJ, Lehn JM, Kyritsakas N, Fischer J, Wegelius EK, Nissinen MJ, Rissanen K (1998) Exploring the 2,2’-diamino-5,5’-bipyrimidine hydrogen-bonding motif: a modular approach to alkoxy-functionalized hydrogen-bonded networks. Helv Chim Acta 81:1921–1930. doi:10.1002/(SICI)1522-2675

    Article  CAS  Google Scholar 

  54. Abdou WM, Fahmy AFM, Kamel AA (2002) A facile synthesis of pyrrolo[3,2-\(d\)]-pyrimidines from 6-azidouracils and ylide phosphoranes. Heteroatom Chem 13:357–365

    Article  CAS  Google Scholar 

  55. Masoud MS, Khalil EA, Hindawy AM, Ramadan AM (2005) Structural chemistry of some pyrimidine-transition metal complexes. Can J Anal Sci Spectrosc 50:297–310

    CAS  Google Scholar 

  56. Studentsov EP, Sochilin EG, Chumak TA, Starzhevskaya LF (1974) Selective alkylation of 5-aminouracil derivatives. Chem Heterocycl Compd 10:1385–1385

    Article  Google Scholar 

  57. Stanovnik B, Prhavc M, Koren B, Tišler M (1983) A new synthesis of 5-amino-1,3-dimethyluracil and its transformation into methyl 1,3-dimethyl-2-oxo-4-imidazoline-4-carboxylate. Acta Chim Slov 30:459–468

  58. Besly DM, Goldberg AA (1957) Potential Antimalarial Derivatives of Triaxa-anthracene. J Chem Soc 4997–5001. doi:10.1039/JR9570004997

  59. Ohshita K, Ishiyama H, Oyanagi K, Nakata H, Kobayashi J (2007) Synthesis of hybrid molecules of caffeine and eudistomin D and its effects on adenosine receptors. Bioorg Med Chem 15:3235–3240. doi:10.1016/j.bmc.2007.02.043

    Article  PubMed  CAS  Google Scholar 

  60. Boncel S, Mạczka M, Walczak KZ (2010) Michael versus retro-Michael reaction in the regioselective synthesis of N\(-\)1 and N\(-\)3 uracil adducts. Tetrahedron 66:8450–8457. doi:10.1016/j.tet.2010.08.059

    Article  CAS  Google Scholar 

  61. Semaine W, Johar M, Tyrrell DL, Kumar R, Agrawal B (2006) Inhibition of hepatitis B virus (HBV) replication by pyrimidines bearing an acyclic moiety: effect on wild-type and mutant HBV. J Med Chem 49:2049–2054. doi:10.1021/jm058271d

    Article  PubMed  CAS  Google Scholar 

  62. Srivastav NC, Manning T, Kunimoto DY, Kumar R (2007) Studies on acyclic pyrimidines as inhibitors of mycobacteria. Bioorg Med Chem 15:2045–2053. doi:10.1016/j.bmc.2006.12.032

    Article  PubMed  CAS  Google Scholar 

  63. Kumar R, Semaine W, Johar M, Tyrrel DLJ, Agrawal B (2006) Effect of various pyrimidines possessing the 1-[(2-hydroxy-1-(hydroxymethyl)ethoxy)methyl] moiety, able to mimic natural 2\(^\prime \)-deoxyribose, on wild-type and mutant hepatitis B virus replication. J Med Chem 49:3693–3700. doi:10.1021/jm060102l

    Article  PubMed  CAS  Google Scholar 

  64. Grote M, St Noll, Noll B, Johannsen B, Kraus W (2004) Syntheses of novel modified acyclic purine and pyrimidine nucleosides as potential substrates of herpes simplex virus type-1 thymidine kinase for monitoring gene expression. Can J Chem 82:513–523. doi:10.1139/v04-005

    Article  CAS  Google Scholar 

  65. Lee CH, Kim JY, Kim WJ, Kim YH (1990) Facile synthesis of tetrahydro-2-furylated pyrimidines and purines using a new catalyst of cesium chloride. Heterocycles 31:211–214. doi:10.3987/COM-89-5256

    Article  CAS  Google Scholar 

  66. Lyttle DA, Petering HG (1958) 5-Bis-(2-chloroethyl)-aminouracil, a new antitumor agent. J Am Chem Soc 80:6459–6460. doi:10.1021/ja01556a079

    Article  CAS  Google Scholar 

  67. Hodgson HH, Walker J (1933) The diazotisation of aromatic nitro-amines and the prevention of diaryl formation in the Sandmeyer reaction. J Chem Soc 1620–1621

  68. Gorlushko DA, Filimonov VD, Krasnokutskaya EA, Semenischeva NI, Go BS, Hwang HY, Cha EH, Chi KW (2008) Iodination of aryl amines in a water-paste form via stable aryl diazonium tosylates. Tetrahedron Lett 49:1080–1082. doi:10.1016/j.tetlet.2007.11.192

    Article  CAS  Google Scholar 

  69. Gorlushko DA, Filimonov VD, Semenishcheva NI, Krasnokutskaya EA, Tret’yakov AN, Go BS, Hwang HY, Cha EH, Chi KW (2008) A simple and efficient procedure for diazotization-iodination of aromatic amines in aqueous pastes by the action of sodium nitrite and sodium hydrogen sulfate. Russ J Org Chem 44:1243–1244

    Article  CAS  Google Scholar 

  70. Behrend R (1885) Versuche zur Synthese von Körpern der Harnsäurereihe. Liebigs Ann 229:1–44. doi:10.1002/jlac.18852290102

    Article  Google Scholar 

  71. Behrend R (1885) II. Versuche zur Synthese von Körpern der Harnsäurereihe. Liebigs Ann Chem 231:249–256. doi:10.1002/jlac.18852310209

    Article  Google Scholar 

  72. Widman O (1896) Ueber das Hydroxytheophyllin. Chem Ber 29:1954–1956. doi:10.1002/cber.189602902158

    Article  CAS  Google Scholar 

  73. Fischer FG, Neumann WP, Roch J (1952) Eine neue Synthese der Harnsäure und des Xanthins. Chem Ber 85:752–760. doi:10.1002/cber.19520850711

    Article  CAS  Google Scholar 

  74. Kitade Y, Hirota K, Maki Y (1993) Diversity of intramolecular rearrangements of uracil derivatives to pyrazolones and hydantoins governed by a prominent 5-substituent effect. J Chem Res (M) 1:101–112

    Google Scholar 

  75. Harnden MR, Hurst DT (1990) The synthesis and chlorination of some pyrimidin-4-ols having 5-nitrogen functionality. Aust J Chem 43:47–53. doi:10.1071/CH9900047

    Article  CAS  Google Scholar 

  76. Chern JW, Wise DS, Townsend LB (1985) Synthesis of 5-[1-(3-methoxycarbonyl)-\(O\)-methylpseudoureido]uracil: a novel method for the conversion of an \(N\),\(N^\prime \)-disubstituted thiourea into an \(O\)-methyl-\(N\),\(N^\prime \)-disubstituted pseudourea. Heterocycles 23:2197–2200. doi:10.3987/R-1985-09-2197

    Article  CAS  Google Scholar 

  77. Srinivasan A, Broom AD (1979) Pyridopyrimidines. 10. Nucleophilic substitutions in the pyrido[3,2-\(d\)]pyrimidine series. J Org Chem 44:435–440. doi:10.1021/jo01317a028

    Article  CAS  Google Scholar 

  78. Kang DH, Kim JS, Jung MJ, Lee ES, Jahng Y, Kwon Y, Na Y (2008) New insight for fluoroquinophenoxazine derivatives as possibly new potent topoisomerase I inhibitor. Bioorg Med Chem Lett 18:1520–1524. doi:10.1016/j.bmcl.2007.12.053

    Article  PubMed  CAS  Google Scholar 

  79. Shaker RM, Abd Elrady M (2008) 5-Aminouracil as a building block in heterocyclic synthesis: part I. One-pot synthesis of pyrimido[5,4-\(b\)]quinolin-2,4,9-triones under microwave irradiation without catalyst. Z Naturforsch 63b:1431–1437

    Google Scholar 

  80. Tominaga Y, Hakowa Y, Hera M, Hosomi A (1990) Synthesis of pyrazolo[3,4-\(d\)]-pyrimidine derivatives using ketene dithioacetals. J Heterocycl Chem 27:775–783. doi:10.1002/jhet.5570270355

    Article  CAS  Google Scholar 

  81. Shaker RM, Sadek KU, Hafez EA, Abd Elrady M (2010) 5-Aminouracil as a building block in heterocyclic synthesis: Part III. One-pot synthesis of novel pyrimido[5,4-\(b\)]-quinoline-2,4,9-triones and pyrimido[5,4-\(c\)]isoquinolines. Z Naturforsch 65b:1485–1490

    Google Scholar 

  82. Bevk D, Jakse R, Svete J, Golobic A, Golic L, Stanovnik B (2003) Transformations of alykl (5-oxo-1-phenyl-4,5-dihydro-1\(H\)-pyrazol-3-yl)acetates into 5-heteroaryl-3-oxo-2-phenyl-3,5-dihydro-2\(H\)-pyrazolo[4,3-\(c\)]pyridine-7-carboxylates. Heterocycles 61:197–223. doi:10.3987/COM-03-S20

    Article  CAS  Google Scholar 

  83. Enrique C, García A, Salas JM (1992) Palladium (II) complexes of Schiff bases derived from 5-amino-2,4-(1\(H\), 3\(H\))pyrimidinedione and its derivatives. Transit Met Chem 17:464–466

    Article  CAS  Google Scholar 

  84. Krutikov VI, Erkin AV (2009) 5-Arylideneaminouracils: I. Synthesis and relations between physicochemical parameters and biological activity. Russ J Gen Chem 79:985–990

    Article  CAS  Google Scholar 

  85. Upadhyay KK, Kumar A (2010) Pyrimidine based highly sensitive fluorescent receptor for \(\text{ Al }^{3+}\) showing dual signalling mechanism. Org Biomol Chem 8:4892–4897. doi:10.1039/C0OB00171F, paper

  86. Jakubiec D, Walczak KZ (2011) Aldimines of 5-aminouracil as reagents in 1,3-dipolar cycloaddition reaction. Monatsh Chem 142:1155–1161. doi:10.1007/s00706-011-0616-1

    Article  CAS  Google Scholar 

  87. Hueso-Ureňa F, Illán-Cabeza NA, Moreno-Carretero MN, Martínez-Martos JM, Ramírez-Expósito MJJ (2003) Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases. J Inorg Biochem 94:326–334. doi:10.1016/S0162-0134(03)00025-4

    Article  PubMed  CAS  Google Scholar 

  88. Özdemir N, Dinçer M, Doğaner G, Astley D, Astley ST (2007) trans-Diaqua5,5\(^\prime \)-[\((E, E)\)-pyridine-2,6-diylbis(methylidynenitrilo)]bis[pyrimidine-2,4(1\(H\),3\(H)\)-dione]zinc (II) nitrate hexafluorophosphate trihydrate. Acta Crystallogr C 63:m147–m149. doi:10.1107/S0108270107008633

    Article  PubMed  CAS  Google Scholar 

  89. Behrend R, Grünwald R (1899) Ueber Aminouracil. Justus Liebigs Annalen der Chemie 309:254–260. doi:10.1002/jlac.18993090303

    Article  CAS  Google Scholar 

  90. Pfleiderer W, Liedek E (1958) Untersuchungen in der Pyrimidinreihe VII. Über 5-Amino-Uracil und Ihre Acetylderivate. Liebigs Ann Chem 612:184–186. doi:10.1002/jlac.19586120120

    Article  Google Scholar 

  91. Noll S, Marijeta K, Lidija S, Holger S, Ivo P (2009) Synthesis of modified pyrimidine bases and positive impact of chemically reactive substituents on their in vitro antiproliferative activity. Eur J Med Chem 44:1172–1179. doi:10.1016/j.ejmech.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  92. Hurst DT, Atcha S, Marshall KL (1991) The synthesis of some thiazolo- and oxazolo[5,4-\(d\)]-pyrimidines and pyrimidinylureas. II. Aust J Chem 44:129–134

    Article  CAS  Google Scholar 

  93. Bamford C, Al-Lamee K (1993) Synthetic polymer membranes with molecular recognition. J Chem Soc Chem Commun 20:1580–1582. doi:10.1039/C39930001580

    Article  Google Scholar 

  94. Boncel S, Walczak K (2009) Novel acyclic amide-conjugated nucleosides and their analogues. Nucleosides Nucleotides Nucleic Acid 28:103–117. doi:10.1080/15257770902736467

    Article  CAS  Google Scholar 

  95. Da Settimo A, Primofiore G, Marini AM, Mori C, Franzone JS, Cirillo R, Reboani C (1987) Synthesis and antiinflammatory activity of some \(N\)-(5-substituted indole-3-ylglyoxyl)amine derivatives. Farmaco Edizione Scietifica Sci 42:17–26

    Google Scholar 

  96. Mittapalli GK, Osornio YM, Guerrero MA, Reddy KR, Krishnamurthy R, Eschenmoser A (2007) Mapping the landscape of potentially primordial informational oligomers: oligodipeptides tagged with 2,4-disubstituted 5-aminopyrimidines as recognition elements. Angew Chem 119:2530–2536. doi:10.1002/ange.200603209

    Article  Google Scholar 

  97. Ulvenlund S, Georgopoulou AS, Mingos DMP, Baxter I, Lawrence SE, White AJP, Williams DJ (1998) Synthesis and characterisation of chelating polycarboxylate ligands capable of forming intermolecular, complementary triple hydrogen bonds. J Chem Soc Dalton Trans 11:1869–1878

    Article  Google Scholar 

  98. Alexandra SG, Ulvenlund S, Mingos DMP, Baxter I, Williams DJ (1999) Synthesis of water soluble DTPA complexes with pendant uracil moieties capable of forming complementary hydrogen bonds. J Chem Soc Dalton Trans 4:547–551

    Google Scholar 

  99. Gangloff AR, Litvak J, Sperandio D, Pararajasingham K (2004) 3,4-Dihydroisoquinolin-1-one derivatives as inducers of inducers of apoptosis. WO/2004/4727; A1, pp 74–75

  100. Marchenko MM, Kopyl’chuk GP, Shmarakov IA, Ketsa OV, Kushnir VN (2006) Synthesis and antitumor activity of 5-(5\(^\prime \),6\(^\prime \)-benzocoumaro-3\(^\prime \)-yl)methylaminouracil hydrobromide and its liposomal medicinal form. Pharm Chem J 40:296–297

    Article  CAS  Google Scholar 

  101. Dyer E, Richmond H (1965) Pyrimidinecarbamates and thiolcarbamates derived from amino- and oxopyrimidines. II. J Med Chem 8:195–200. doi:10.1021/jm00326a011

    Article  PubMed  CAS  Google Scholar 

  102. Stanovnik B, Zmitek J, Tišler M (1981) A new method for the preparation of substituted 2-pyrimidinyl- and \(s\)-triazinyl-formamide oximes. Formylation of heterocyclic amines with trisformaminomethane. Heterocycles 16:2173–2176. doi:10.3987/R-1981-12-2173

    Article  CAS  Google Scholar 

  103. Polanc S, Verček B, Šek B, Stanovnik B, Tišler M (1974) Heterocycles. CXVIII. Pyridazines. LXVI. Novel method of annelation of the 1,2,4-triazole ring of the N2–C3 bond to azines. J Org Chem 39:2143–2147. doi:10.1021/jo00929a002

    Article  CAS  Google Scholar 

  104. Stanovnik B, Bajt O, Belcic B, Koren B, Prhavc M, Stimac A, Tisler M (1984) \(N\),\(N\)-dimethylchloroformiminium chloride in the synthesis of heterocyclic compounds. The synthesis of \(N\)-heteroarylformatidine hydrochlorides, oxazolo[5,4-\(d\)]pyrimidines, fused Imidazoles and other systems. Heterocycles 22:1545–1554. doi:10.3987/R-1984-07-1545

    Article  CAS  Google Scholar 

  105. Backer HJ, Grevenstuk AB (1941) Deux Sulfanilamidopyrimidines. Recueil des Travaux Chimiques des Pays 60:502–504. doi:10.1002/recl.19410600704

    Article  CAS  Google Scholar 

  106. Roblin RO Jr, Winnek PS, English JP (1942) Studies in chemotherapy. IV. Sulfanilamidopyrimidines. J Am Chem Soc 64:567–570. doi:10.1021/ja01255a030

    Article  CAS  Google Scholar 

  107. Johnson TB, Baudisch O, Hoffmann A (1931) Über die Bildung von Diazo-uracil-anhydrid aus Amino-uracil (Vorläufige Mitteil.) ein Beitrag zur Pyrimidin-Forschung, aus dem sterling chemistry laboratory. Chem Ber 64:2629–2631. doi:10.1002/cber.19310641010

    Article  Google Scholar 

  108. Behrend R, Ernert P (1890) Uber Diazouracilcarbonsaure und deren Derivate. Ann 258:347–359

    Google Scholar 

  109. Thurber TC, Townsend LB (1972) A reinvestigation of the structures for 5-diazouracil, 5-diazouridine, 5-diazo-2’-deoxyuridine and certain related derivatives by proton magnetic resonance spectroscopy. J Heterocycl Chem 9:629–636. doi:10.1002/jhet.5570090325

    Article  CAS  Google Scholar 

  110. Tsupak EB, Shevchenko MA, Tkachenko YuN, Nazarov DA (2002) 5-Diazouracils in azo coupling reactions. Russ J Org Chem 38:880–888

    Article  CAS  Google Scholar 

  111. Bogert MT, Davidson D (1932) Azo derivatives of the pyrimidine. Proc Natl Acad Sci USA 18:215–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Elslager EF, Worth DF (1963) Synthetic schistosomicides. III. 5-(4-amino-1-naphthylazo)uracil and related heterocyclic azo compounds. J Med Chem 6:444–447. doi:10.1021/jm00340a024

    Article  PubMed  CAS  Google Scholar 

  113. Elslager EF, Capps DB, Kurtz DH (1963) Synthetic schistosomicides. IV. 5-[4-(2-Diethylamino-ethylamino)-1-naphthylazo]uracil and related [4-(aminoalkylamino)-1-naphthylazo]heterocyclic compounds. J Med Chem 6:646–653. doi:10.1021/jm00342a006

    Article  PubMed  CAS  Google Scholar 

  114. Elslager EF, Capps DB (1964) Synthetic schistosomicides. VII. 5-Azo-6-alkoxy-8-(aminoalkylamino)quinolines. J Med Chem 7:663–664. doi:10.1021/jm00335a023

    Article  PubMed  CAS  Google Scholar 

  115. Kikuth W, Gonnert R (1948) Experimental studies on the therapy of schistosomiasis. Ann Trop Med Parasitol 42:256–267

    PubMed  CAS  Google Scholar 

  116. Elslager EF, Capps DB, Werbel LM, Worth DF, Meisenhelder JE, Najarian H, Thompson PE (1963) [4-(Aminoalkylamino)-1-naphthylazo]heterocyclic compounds, a novel class of schistosomicides. J Med Chem 6:217–219. doi:10.1021/jm00338a038

    Article  PubMed  CAS  Google Scholar 

  117. Fathalla OA, Radwan HH, Awad SM, Mohamed MS (2006) Synthesis and biological evaluation of new pyrimidine derivatives. Indian J Chem 45B:980–985

    CAS  Google Scholar 

  118. Leyva S, Leyva E (2007) Thermochemical reaction of 7-azido-1-ethyl-6,8-difluoroquinolone-3-carboxylate with heterocyclic amines. An expeditious synthesis of novel fluoroquinolone derivatives. Tetrahedron 63:2093–2097. doi:10.1016/j.tet.2006.11.079

    Article  CAS  Google Scholar 

  119. Velchinskaya EV, Kuz’menko II, Kulik LS (1999) Synthesis of new substituted uracils and pyrimidines. Pharm Chem J 33:155–157

    Article  CAS  Google Scholar 

  120. Velchinskaya E, Petsushak B, Rogal A (2007) Investigation of the physicochemical characteristics and biological activity of new derivatives of \(N\)-substituted maleimides. Chem Heterocycl Compd 43:695–700

    Article  CAS  Google Scholar 

  121. Akhmerov MA, Reznik VS, Shagidullin Rif R, Shvetsov YuS (1992) Interamination of some aminooxypyrimidines. Bull Russ Acad Sci Div Chem Sci (Engl. Transl.) 41:137–140

    Article  Google Scholar 

  122. Adams JL, Boehm JC, Hall R, Jin Q, Kasparec J, Silva DJ, Taggart JJ (2004) Novel compounds. US 20040116697A1, pp 64–65

  123. Wiegerinck P, Snoeck R, Claes P, De Clercq E, Herdewijn P (1991) Synthesis and antiviral activity of 5-heteroaryl-substituted 2\(^\prime \)-deoxyuridines. J Med Chem 34:1767–1772. doi:10.1021/jm00110a003

    Article  Google Scholar 

  124. Almerico AM, Montalbano A, Diana P, Barraja P, Lauria A, Cirrincione G, Dattolo G (2001) On the preparation of 1-aryl-2-heteroaryl- and 2-aryl-1-heteroarylpyrroles as useful building blocks for biologically interesting heterocycle. ARKIVOC VI:129–142

    Google Scholar 

  125. Walczak K, Pedersen EB, Nielsen C (1998) Synthesis of 5-(4-nitroimidazol-yl)-2\(^\prime \)-deoxyuridines. Acta Chim Scand 52:513–514

    Article  CAS  Google Scholar 

  126. Hurst DT, Atcha S, Marshall KL (1991) The synthesis of some thiazolo- and oxazolo[5,4-\(d\)]-pyrimidines and pyrimidinylureas. II. Aust J Chem 44:129–134. doi:10.1071/CH9910129

    Article  CAS  Google Scholar 

  127. Pomel V, Gaillard P, Desforges G, Quattropani A, Montagne C (2010) 4-Morpholino-pyrido[3,2\(d\)]pyrimidines. WO 2010037765, p 59

  128. Tian C, Zhang ZL, Liu JY (2012) Synthesis and evaluation of 8-deaza-5,6,7,8-tetrahydromethotrexate derivatives as dihydrofolate reductase inhibitors. J Chin Pharm Sci 21:142–148. doi:10.5246/jcps.2012.02.018

    CAS  Google Scholar 

  129. Shaker RM, Sadek KU, Hafez EA, Abd Elrady M (2011) 5-Aminouracil as a building block in heterocyclic synthesis: part IV. One-pot synthesis of 1\(H\)-pyrrolo[2,3-\(d\)]-pyrimidine-2,4(3\(H\),7\(H)\)-dione derivatives using controlled microwave heating. Z Naturforsch 66b:843–849

    Article  Google Scholar 

  130. Shaker RM, Ameen MA, Abdel Hameed AM, Abd Elrady M (2009) 5-Aminouracil as a building block in heterocyclic synthesis, part II. One-pot synthesis of pyrido[3,2-\(d\):6,5-\(d{^\prime }\)]dipyrimidines under microwave irradiation without catalyst. Z Naturforsch 64b:1193–1198

    Google Scholar 

  131. Thurber TC, Townsend LB (1973) Novel ring contraction of 05\(^\prime \)-6(S)-cyclo-5-diazouridine. Elimination of a ring carbonyl group in preference to diatomic nitrogen. J Am Chem Soc 95:3081–3082. doi:10.1021/ja00790a093

    Article  CAS  Google Scholar 

  132. Thurber TC, Pugmire RJ, Townsend LB (1974) A study on the ring contraction of 5-diazo-1-methyluracil-6-methanolate and a convenient method for establishing the site of heterocyclic \(N\)-substitution. J Heterocycl Chem 11:645–647. doi:10.1002/jhet.5570110439

    Article  CAS  Google Scholar 

  133. Thurber TC, Townsend LB (1976) Ring contractions of 5-diazouracils. I. Conversions of 5-diazouracils into 1,2,3-triazoles by hydrolysis and methanolysis. J Org Chem 41:1041–1051. doi:10.1021/jo00868a026

    Article  PubMed  CAS  Google Scholar 

  134. Thurber TC, Townsend LB (1977) An investigation on the thermolytic conversions of 5-diazouracils into 1,2,3-triazoles. J Heterocycl Chem 14:647–651. doi:10.1002/jhet.5570140421

    Article  CAS  Google Scholar 

  135. Romani S, Klotzer W (1978) Reaktionen von 5-diazourazilen mit primären aminen zu 1,2,3-triazolcarbonsäurederivaten. J Heterocycl Chem 15:1349–1350. doi:10.1002/jhet.5570150821

    Article  CAS  Google Scholar 

  136. Kaminsky D, Lutz W, Lazarus S (1966) Some congeners and analogs of dipyridamole. J Med Chem 9:610–612. doi:10.1021/jm00322a041

    Article  PubMed  CAS  Google Scholar 

  137. Novák FJ, Schwammenhoferövá K, Čihaliková J, Ondřej M (1979) Partial synchronization of cell division in root meristem induced by 5-aminouracil. Biol Plant 21:51–56

    Article  Google Scholar 

  138. Ondřej M, Schwammenhoferövá K (1979) Autoradiographic study of the effect of 5-aminouracil on the S phase and mitosis of barley root meristems. Biol Plant 21:187–192

    Article  Google Scholar 

  139. Ondřej M (1979) The influence of 5-aminouracil on the mitotic index of barley root meristems. Biol Plant 21:440–445

    Article  Google Scholar 

  140. Socher SH, Davidson D (1971) 5-AMINOURACIL TREATMENT: a method for estimating \(\text{ G }_{2}\). J Cell Biol 48:248–252. doi:10.1083/jcb.48.2.248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Hitchings GH, Elion GB, Falco EA (1950) Antagonists of nucleic acid derivatives. II. Reversal studies with substances structurally related to thymine. J Biol Chem 185:643–649

    PubMed  CAS  Google Scholar 

  142. Hitchings GH, Elion GB, Falco EA, Russell PR, Werff HV (1950) Studies on Analogs of Purines and Pyrimidines. Ann N Y Acad Sci 52:1318–1335. doi:10.1111/j.1749-6632.1950.tb54032.x

    Article  PubMed  CAS  Google Scholar 

  143. Puleston HS, Poe CF, Witt NF (1955) Inhibition studies with pyrimidines on Streptococcus faecalis R. J Biol Chem 212:319–323

    PubMed  CAS  Google Scholar 

  144. Zamenhof S, Griboff G (1954) Incorporation of halogenated pyrimidines into the deoxyribonucleic acids of bacterium coli and its bacteriophages. Nature 174:306–307. doi:10.1038/174306a0

    Article  CAS  Google Scholar 

  145. Duncan RE, Woods PS (1953) Some cytological aspects of antagonism in synthesis of nucleic acid. Chromosoma 6:45–60

    Article  PubMed  CAS  Google Scholar 

  146. Prensky W, Smith HH (1964) Incorporation of 3-H-arginine in chromosomes of Vicia Faba. Exp Cell Res 34:525–532

    Article  PubMed  CAS  Google Scholar 

  147. Alberts B, Bray D, Lewis J, Raff N, Roberts K, Watson JD (1994) Peroxisomes. Molecular cell biology, 3rd edn. Garland Publishing, New York, pp 574–577

    Google Scholar 

  148. Greer SB (1958) Growth inhibitors and their antagonists as mutagens and antimutagens in Escherichia coli. J Gen Microbiol 18:543–564

    Article  PubMed  CAS  Google Scholar 

  149. Wacker A, Kirscjhfield S, Hartmann D, Weinblum UD (1960) Über den Einbau von 5-nitrouraeil, 5-aminouracil und 2-thiothymin in die bakteriendeoxyribonukleinsäure. J Mol Biol 2:69–71

    Article  CAS  Google Scholar 

  150. Theil EC, Zamenhof S (1963) Possible turnover of DNA with an increased 6-methylaminopurine content. Nature 199:599–600. doi:10.1038/199599a0

    Article  PubMed  CAS  Google Scholar 

  151. Theil EC, Zamenhof S (1963) Studies on 6-methylaminopurine (6-methyladenine) in bacterial deoxyribonucleic acid. J Biol Chem 238:3058–3064

    PubMed  CAS  Google Scholar 

  152. Ottey L (1955) The effect of purine and pyrimidine analogues on enzyme induction in Mycobacterium tuberculosis. J Pharmacol Exp Ther 115:339–342

    PubMed  CAS  Google Scholar 

  153. Prensky W, Smith HH (1965) The mechanism of 5-aminouracil-induced synchrony of cell division in Vicia Faba root meristems. J Cell Biol 24:401–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Jakob KM, Trosko JE (1965) The relation between 5-amino uracil-induced mitotic synchronization and DNA synthesis. Exp Cell Res 40:56–67

    Article  PubMed  CAS  Google Scholar 

  155. Mattingly E (1966) Differences in mitotic cycle in various tissues of Vicia faba roots as revealed by 5-amino uracil synchronization of cell division. Exp Cell Res 42:274–280

    Article  PubMed  CAS  Google Scholar 

  156. Wagenaar EB (1966) High mitotic synchronization induced by 5-aminouracil in root cells of Allium cepa L. Exp Cell Res 43:184–190

    Article  PubMed  CAS  Google Scholar 

  157. Eriksson T (1966) Partial synchronization of cell division in suspension cultures of Haplopappus gracilis. Physiol Plant 19:900–910

    Article  CAS  Google Scholar 

  158. Jakob KM (1968) The inhibition of RNA synthesis in Vicia faba by 5-amino uracil. Exp Cell Res 52:499–506

    Article  CAS  Google Scholar 

  159. Schanker LS, Jeffrey JJ (1962) Structural specificity of the pyrimidine transport process of the small intestine. Biochem Pharmacol 11:961–966

    Article  PubMed  CAS  Google Scholar 

  160. Beltz RE, Visser DW (1956) Studies on the action of thymidine analogues. J Biol Chem 226:1035–1045

    Google Scholar 

  161. Roberts M, Visser DW (1952) Antimetabolite activity of uridine and cytidine derivatives. J Biol Chem 194:695–701

    PubMed  CAS  Google Scholar 

  162. Smith DA, Roy-Burman P, Visser DW (1966) Studies on 5-aminouridine. Biochim Biophys Acta 119:221–228

    Article  PubMed  CAS  Google Scholar 

  163. Ivanovics GA, Rousseau RJ, Robins RK (1971) Nucleoside peptides. 2. Synthesis of certain 5-\(N\)-aminoacyl and 5-\(N\)-peptidyl derivatives of 5-aminouridine. J Med Chem 14:1155–1158. doi:10.1021/jm00294a003

    Article  PubMed  CAS  Google Scholar 

  164. Loveless LE, Spoerl E, Weisman TH (1954) A study of effects of chemicals on division and growth of yeast and Escherichia Coli. J Bactenol 68:637–644

    CAS  Google Scholar 

  165. Campbell JE, Etter DE, Loveless LE (1954) The effect of diazouracil on the oxidation of alpha-ketoglutarate by rat liver homogenate. Arch Biochem Biophys 51:520–523

    Article  PubMed  CAS  Google Scholar 

  166. Hunt DE, Pittillo RF (1968) Antimicrobial evaluation of 5-diazouracil. Appl Microbiol 16:1792–1793

    PubMed  PubMed Central  CAS  Google Scholar 

  167. Previc E, Richardson S (1969) Growth-physiological changes in Escherichia coli and other bacteria during division inhibition by 5-diazouracil. J Bacteriol 91:416–425

    Google Scholar 

  168. Weisrnan TH, Loveless LE (1954) Chemical inhibition of cell division of Escherichia coli by diazo compounds and antagonism by tyrosine. Proc Soc Exp Biol Med 86:268–273

    Article  Google Scholar 

  169. Dale JL, Thornberry HH (1955) Effect of some compounds and biological products upon Infection by tobacco mosaic virus. Trans III Acad Sci 47:65–71

    CAS  Google Scholar 

  170. Schlegel DE, Rawlins TE (1954) A screening test of the effect of organic compounds on production of tobacco mosaic virus. J Bacteriol 67:103–109

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Cochran KW (1957) Chemoprophylaxis with diazouracil of poliomyelitis in mice. Science 126:1115. doi:10.1126/science.126.3283.1115

    Article  PubMed  CAS  Google Scholar 

  172. Hollinshead AC (1962) Insignificant inhibitory effects by pyrimidines on enterovirus propagation and their probable secondary role as inhibitors. Med Exp Int J Exp Med 7:110–118

    PubMed  CAS  Google Scholar 

  173. Stone JE, Potter VR (1957) Biochemical screening of pyrimidine antimetabolites III. The testing of drugs against a system with a nonoxidative energy source. Cancer Res 17:800–803

    PubMed  CAS  Google Scholar 

  174. Brown DJ (1962) The pyrimidines. Wiley, New York

    Google Scholar 

  175. Ross WCJ (1958) In vitro reactions of biological alkylating agents. Ann N Y Acad Sci 68:669–681

    Article  PubMed  CAS  Google Scholar 

  176. Sassenrath EN, Kells AM, Greenberg DM (1959) Characterization studies on the carcinostatic activity of 5-diazouracil. Cancer Res 19:259–267

    PubMed  CAS  Google Scholar 

  177. Griswold DP, Laster WR, Snow MY, Schabel FM, Skipper HE (1963) Experimental evaluation of potential anticancer agents. XII. Quantitative drug response of the SAI80, CA755, and leukemia LI210 systems to a “standard list” of “active” and “inactive” agents. Cancer Res 23:271–519

    Google Scholar 

  178. Bateman JR, Jacobs EM, Marsh AA, Steinfeld JL (1964) 5-Diazouracil (NSC-23519): a phase I study. Cancer Chemother Rep 41:27–34

  179. Elslager EF, Short FW, Worth DF, Meisenhelder JE, Najarian H, Thompson PE (1961) Effects of tris(paminophenyl)-carbonium salts and related compounds on experimental schistosomiasis and paragonimiasis. Nature 190:628–629. doi:10.1038/191627ao

    Article  PubMed  CAS  Google Scholar 

  180. Lane M, Kelly MG (1960) The antitumor activity of 5-bis-(2-chlorethyl)-aminouracil (uracil mustard). Cancer Res 20:511–517

    PubMed  CAS  Google Scholar 

  181. Hitchings GH, Thomson RL (1950) 5-Aminouracils and process of making the same. U.S. Patent 2,494,125

  182. Abou-Charbia M, Patel UR, Webb MB (1988) Polycyclic aryl- and heteroarylpiperazinyl imides as 5-HT1A receptor ligands and potential anxiolytic agents: synthesis and structure-activity relationship studies. J Med Chem 31:1382–1392. doi:10.1021/jm00402a023

  183. Cooncy DA, Milman HA, Cable RG (1978) Maleimide-biochemical, pharmacologic and toxicologic studies: interaction with fl-asparagine metabolism. Biochem Pharmacol 27:151–166

    Article  Google Scholar 

  184. Balasubramaniyan V, Balasubramaniyan P, Shaikh AS (1986) Reactions of o-aminothiophenol with \(\upalpha \upbeta \)-unsaturated dicarbonyl systems. Facile synthesis of benzothiazines and benzothiazepines. Tetrahedron 42:2731–2738. doi:10.1016/s0040-4020(01)90560-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Usef Sadek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaker, R.M., Elrady, M.A. & Sadek, K.U. Synthesis, reactivity, and biological activity of 5-aminouracil and its derivatives. Mol Divers 20, 153–183 (2016). https://doi.org/10.1007/s11030-015-9595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9595-1

Keywords

Navigation