Skip to main content

Advertisement

Log in

Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Pelargonium sidoides DC (Geraniaceae) is a medicinal plant indigenous to Southern Africa that has been widely evaluated for its use in the treatment of upper respiratory tract infections. In recent studies, the anti-proliferative potential of P. sidoides was shown, and several phenolic compounds were identified as the bioactive compounds. Little, however, is known regarding their anti-proliferative protein targets. In this study, the anti-proliferative mechanisms of P. sidoides through in silico target identification and network pharmacology methodologies were evaluated. The protein targets of the 12 phenolic compounds were identified using the target identification server PharmMapper and the server for predicting Drug Repositioning and Adverse Reactions via the Chemical–Protein Interactome (DRAR-CPI). Protein–protein and protein–pathway interaction networks were subsequently constructed with Cytoscape 3.4.0 to evaluate potential mechanisms of action. A total of 142 potential human target proteins were identified with the in silico target identification servers, and 90 of these were found to be related to cancer. The protein interaction network was constructed from 86 proteins involved in 209 interactions with each other, and two protein clusters were observed. A pathway enrichment analysis identified over 80 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with the protein targets and included several pathways specifically related to cancer as well as various signaling pathways that have been found to be dysregulated in cancer. These results indicate that the anti-proliferative activity of P. sidoides may be multifactorial and arises from the collective regulation of several interconnected cell signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brendler T, Van Wyk B (2008) A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J Ethnopharmacol 119:420–433. doi:10.1016/j.jep.2008.07.037

    Article  CAS  PubMed  Google Scholar 

  2. Matthys H, Eisebitt R, Seith B, Heger M (2003) Efficacy and safety of an extract of Pelargonium sidoides (EPs 7630) in adults with acute bronchitis: a randomised, double-blind, placebo-controlled trial. Phytomedicine 10:7–17. doi:10.1078/1433-187X-00308

    Article  PubMed  Google Scholar 

  3. Matthys H, Kamin W, Funk P, Heger M (2007) Pelargonium sidoides preparation (\(\text{ EPs }^{{\textregistered }}\,7630\)) in the treatment of acute bronchitis in adults and children. Phytomedicine 14:69–73. doi:10.1016/j.phymed.2006.11.015

    Article  PubMed  Google Scholar 

  4. Chuchalin AG, Berman B, Lehmacher W (2005) Treatment of acute bronchitis in adults with a Pelargonium sidoides preparation (EPs 7630): a randomized, double-blind, placebo-controlled trial. Explore 1:437–445. doi:10.1016/j.explore.2005.08.009

    Article  CAS  PubMed  Google Scholar 

  5. Lizogub VG, Riley DS, Heger M (2007) Efficacy of a Pelargonium sidoides preparation in patients with the common cold: a randomized, double blind, placebo-controlled clinical trial. Explore 3:573–584. doi:10.1016/j.explore.2007.09.004

    Article  PubMed  Google Scholar 

  6. Conrad A, Hansmann C, Engels I, Daschner FD, Frank U (2007) Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro. Phytomedicine 14(Suppl 6):46–51. doi:10.1016/j.phymed.2006.11.016

    Article  PubMed  Google Scholar 

  7. Lewu F, Grierson D, Afolayan A (2006) The leaves of Pelargonium sidoides may substitute for its roots in the treatment of bacterial infections. Biol Conserv 128:582–584. doi:10.1016/j.biocon.2005.10.018

    Article  Google Scholar 

  8. Kayser O, Kolodziej H (1997) Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Med 63:508–510. doi:10.1055/s-2006-957752

    Article  CAS  PubMed  Google Scholar 

  9. Kayser O, Kolodziej H, Kiderlen A (2001) Immunomodulatory principles of Pelargonium sidoides. Phytother Res 15:122–126. doi:10.1002/ptr.785

    Article  CAS  PubMed  Google Scholar 

  10. Kolodziej H, Kayser O, Radtke OA, Kiderlen AF, Koch E (2003) Pharmacological profile of extracts of Pelargonium sidoides and their constituents. Phytomedicine 10(Suppl 4):18–24. doi:10.1078/1433-187X-00307

    Article  CAS  PubMed  Google Scholar 

  11. Koch E, Hauer H, Stumpf K (2006) Use of Pelargonium sidoides and Pelargonium reniforme root extracts. US Patent 2006-0263448

  12. Mativandlela S, Lall N, Meyer JJM (2006) Antibacterial, antifungal and antitubercular activity of (the roots of) Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (Geraniaceae) root extracts. S Afr J Bot 72:232–237. doi:10.1016/j.sajb.2005.08.002

    Article  Google Scholar 

  13. Michaelis M, Doerr HW, Cinatl J Jr (2011) Investigation of the influence of EPs(R) 7630, a herbal drug preparation from Pelargonium sidoides, on replication of a broad panel of respiratory viruses. Phytomedicine 18:384–386. doi:10.1016/j.phymed.2010.09.008

    Article  PubMed  Google Scholar 

  14. Noldner M, Schotz K (2007) Inhibition of lipopolysaccharid-induced sickness behavior by a dry extract from the roots of Pelargonium sidoides (EPs 7630) in mice. Phytomedicine 14(Suppl 6):27–31. doi:10.1016/j.phymed.2006.11.013

    Article  PubMed  Google Scholar 

  15. Schnitzler P, Schneider S, Stintzing FC, Carle R, Reichling J (2008) Efficacy of an aqueous Pelargonium sidoides extract against herpesvirus. Phytomedicine 15:1108–1116. doi:10.1016/j.phymed.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  16. Kolodziej H (2007) Fascinating metabolic pools of Pelargonium sidoides and Pelargonium reniforme, traditional and phytomedicinal sources of the herbal medicine \(\text{ Umckaloabo }^{\textregistered }\). Phytomedicine 14:9–17. doi:10.1016/j.phymed.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  17. Pereira A, Bester M, Soundy P, Apostolides Z (2015) Activity-guided isolation and identification of the major antioxidant and anticancer compounds from a commercial Pelargonium sidoides tincture. Med Chem Res 24:3838–3852. doi:10.1007/s00044-015-1425-6

    Article  CAS  Google Scholar 

  18. Pereira A, Bester M, Soundy P, Apostolides Z (2016) Anti-proliferative properties of commercial Pelargonium sidoides tincture, with cell-cycle \(\text{ G }_{0}/\text{ G }_{1}\) arrest and apoptosis in Jurkat leukaemia cells. Pharm Biol 54:1831–1840. doi:10.3109/13880209.2015.1129545

    Article  CAS  PubMed  Google Scholar 

  19. Ho H, Chang C, Ho W, Liao SY, Wu CH, Wang CJ (2010) Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-\(\kappa \)B activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol 48:2508–2516. doi:10.1016/j.fct.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  20. Meeran SM, Katiyar SK (2007) Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential. Exp Dermatol 16:405–415. doi:10.1111/j.1600-0625.2007.00542.x

    Article  CAS  PubMed  Google Scholar 

  21. Rajalingam K, Schreck R, Rapp UR, Albert Š (2007) Ras oncogenes and their downstream targets. Biochim Biophys Acta 1773:1177–1195. doi:10.1016/j.bbamcr.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  22. Vayalil PK, Mittal A, Katiyar SK (2004) Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF\(\kappa \)B. Carcinogenesis 25:987–995. doi:10.1093/carcin/bgh095

    Article  CAS  PubMed  Google Scholar 

  23. Arodz T, Bonchev D, Diegelmann RF (2013) A network approach to wound healing. Adv Wound Care 2:499–509. doi:10.1089/wound.2012.0386

    Article  Google Scholar 

  24. Chandrasekaran S, Bonchev D (2013) A network view on Parkinson’s disease. Comput Struct Biotechnol J 7:1–18. doi:10.5936/csbj.201304004

    Article  Google Scholar 

  25. Durán FJR, Alonso N, Caamaño O, García-Mera X, Yañez M, Prado-Prado FJ, González-Díaz H (2014) Prediction of multi-target networks of neuroprotective compounds with entropy indices and synthesis, assay, and theoretical study of new asymmetric 1, 2-rasagiline carbamates. Int J Mol Sci 15:17035–17064. doi:10.3390/ijms150917035

    Article  Google Scholar 

  26. González-Díaz H, Herrera-Ibatá DM, Duardo-Sánchez A, Munteanu CR, Orbegozo-Medina RA, Pazos A (2014) ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J Chem Inf Model 54:744–755. doi:10.1021/ci400716y

    Article  PubMed  Google Scholar 

  27. Prado-Prado F, García-Mera X, Escobar M, Sobarzo-Sánchez E, Yañez M, Riera-Fernandez P, González-Díaz H (2011) 2D MI-DRAGON: a new predictor for protein–ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins. Eur J Med Chem 46:5838–5851. doi:10.1016/j.ejmech.2011.09.045

    Article  CAS  PubMed  Google Scholar 

  28. Prado-Prado F, Garcia-Mera X, Escobar M, Alonso N, Caamano O, Yanez M, Gonzalez-Diaz H (2012) 3D MI-DRAGON: new model for the reconstruction of US FDA drug-target network and theoretical-experimental studies of inhibitors of rasagiline derivatives for AChE. Curr Top Med Chem 12:1843–1865. doi:10.2174/156802612803989228

    Article  CAS  PubMed  Google Scholar 

  29. Romero-Durán FJ, Alonso N, Yañez M, Caamaño O, García-Mera X, González-Díaz H (2016) Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology 103:270–278. doi:10.1016/j.neuropharm.2015.12.019

    Article  PubMed  Google Scholar 

  30. Thomas S, Bonchev D (2010) A survey of current software for network analysis in molecular biology. Hum Genomics 4:353–360. doi:10.1186/1479-7364-4-5-353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattacharjee B, Chatterjee J (2013) Identification of proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of essential oils in cardamom by dual reverse virtual screening and binding pose analysis. Asian Pac J Cancer Prev 14:3735–3742. doi:10.7314/APJCP.2013.14.6.3735

    Article  PubMed  Google Scholar 

  32. Lei Q, Liu H, Peng Y, Xiao P (2015) In silico target fishing and pharmacological profiling for the isoquinoline alkaloids of Macleaya cordata (Bo Luo Hui). Chin Med 10:37. doi:10.1186/s13020-015-0067-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma X, Lv B, Li P, Jiang X, Zhou Q, Wang X, Gao X (2016) Identification of “multiple components-multiple targets-multiple pathways” associated with naoxintong capsule in the treatment of heart diseases using UPLC/Q-TOF-MS and network pharmacology. Evid Based Complement Altern Med 2016:1–15. doi:10.1155/2016/9468087

    Google Scholar 

  34. Shao Y, Qiao L, Wu L, Sun X, Zhu D, Yang X, Mao X, Chen W, Liang W (2016) Structure identification and anti-cancer pharmacological prediction of triterpenes from Ganoderma lucidum. Molecules 21:678. doi:10.3390/molecules21050678

    Article  Google Scholar 

  35. Zhang S, Shan L, Li Q, Wang X, Li S, Zhang Y, Fu J, Liu X, Li H, Zhang W (2014) Systematic analysis of the multiple bioactivities of green tea through a network pharmacology approach. Evid Based Complement Altern Med 2014:512081. doi:10.1155/2014/512081

    Google Scholar 

  36. ACD/Chemsketch version 12.02. Advanced Chemistry Development, Inc., Toronto, ON, Canada. http://www.acdlabs.com

  37. UCSF Chimera version 1.11. Resource for biocomputing, visualization, and informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311). http://www.rbvi.ucsf.edu/chimera

  38. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  39. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010) PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609–W614. doi:10.1093/nar/gkq300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical–protein interactome. Nucleic Acids Res 39:W492–W498. doi:10.1093/nar/gkr299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Disease and Gene Annotations. Northwestern University Biomedical Informatics Center, NorthWestern University, Chicago. http://dga.nubic.northwestern.edu

  42. Peng K, Xu W, Zheng J, Huang K, Wang H, Tong J, Lin Z, Liu J, Cheng W, Fu D, Du P, Kibbe WA, Lin SM, Xia T (2013) The disease and gene annotations (DGA): an annotation resource for human disease. Nucleic Acids Res 41:D553–D560. doi:10.1093/nar/gks1244

    Article  CAS  PubMed  Google Scholar 

  43. Cytoscape version 3.4.0. Cytoscape Consortium, San Diego. http://www.cytoscape.org

  44. NetworkAnalyzer Application version 2.7. Max-Planck-Institut für Informatik, Saarbrücken. http://med.bioinf.mpi-inf.mpg.de/netanalyzer/index.php

  45. String Database version 10.0. String Consortium 2017. https://string-db.org

  46. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. doi:10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  47. Merico D, Gfeller D, Bader GD (2009) How to visually interpret biological data using networks. Nat Biotechnol 27:921–924. doi:10.1038/nbt.1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bailey CL, Kelly P, Casey PJ (2009) Activation of Rap1 promotes prostate cancer metastasis. Cancer Res 69:4962–4968. doi:10.1158/0008-5472.CAN-08-4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290. doi:10.1038/sj.onc.1210421

    Article  CAS  PubMed  Google Scholar 

  50. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22. doi:10.1038/nrc969

    Article  CAS  PubMed  Google Scholar 

  51. Giles FJ (2001) The vascular endothelial growth factor (VEGF) signaling pathway: a therapeutic target in patients with hematologic malignancies. Oncologist 6(Suppl 5):32–39. doi:10.1634/theoncologist.6-suppl_5-32

    Article  CAS  PubMed  Google Scholar 

  52. Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184. doi:10.1016/j.ceb.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  53. Jeon S, Hay N (2015) The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch Pharm Res 38:346–357. doi:10.1007/s12272-015-0549-z

    Article  CAS  PubMed  Google Scholar 

  54. Masoud GN, Li W (2015) HIF-1\(\alpha \) pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. doi:10.1016/j.apsb.2015.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  55. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4:a008052. doi:10.1101/gad.14.15.1837

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pópulo H, Lopes JM, Soares P (2012) The mTOR signalling pathway in human cancer. Int J Mol Sci 13:1886–1918. doi:10.3390/ijms13021886

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tai Y, Chen L, Shen T (2015) Emerging roles of focal adhesion kinase in cancer. Biomed Res Int 2015:690690. doi:10.1155/2015/690690

    PubMed  PubMed Central  Google Scholar 

  58. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204. doi:10.1016/j.ctrv.2003.07.007

    Article  CAS  Google Scholar 

  59. Lee SH, Park C, Jin C, Kim G, Moon S, Hyun JW, Lee WH, Choi BT, Kwon TK, Yoo YH (2008) Involvement of extracellular signal-related kinase signaling in esculetin induced G1 arrest of human leukemia U937 cells. Biomed Pharmacother 62:723–729. doi:10.1016/j.biopha.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  60. Velasco-Velázquez MA, Agramonte-Hevia J, Barrera D, Jiménez-Orozco A, García-Mondragón MJ, Mendoza-Patiño N, Landa A, Mandoki J (2003) 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16–F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett 198:179–186. doi:10.1016/S0304-3835(03)00333-1

    Article  PubMed  Google Scholar 

  61. Wang C, Hsieh Y, Chu C, Lin Y, Tseng T (2002) Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett 183:163–168. doi:10.1016/S0304-3835(02)00031-9

    Article  CAS  PubMed  Google Scholar 

  62. Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25:6391–6403. doi:10.1128/MCB.25.15.6391-6403.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG (2004) Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci USA 101:16419–16424. doi:10.1073/pnas.0407396101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lim S, Clément M (2007) Phosphorylation of the survival kinase Akt by superoxide is dependent on an ascorbate-reversible oxidation of PTEN. Free Radic Biol Med 42:1178–1192. doi:10.1016/j.freeradbiomed.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  65. Simon AR, Rai U, Fanburg BL, Cochran BH (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 275:C1640–C1652

    Article  CAS  PubMed  Google Scholar 

  66. Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631. doi:10.1074/jbc.275.19.14624

    Article  CAS  PubMed  Google Scholar 

  67. Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217:518–528. doi:10.1002/jcp.21529

    Article  CAS  PubMed  Google Scholar 

  68. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22:7369–7375. doi:10.1038/sj.onc.1206940

    Article  CAS  PubMed  Google Scholar 

  69. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899. doi:10.1016/j.cell.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lucia MS, Torkko KC (2004) Inflammation as a target for prostate cancer chemoprevention: pathological and laboratory rationale. J Urol 171:S30–S35. doi:10.1097/01.ju.0000108142.53241.47

    Article  PubMed  Google Scholar 

  71. Melchert M, List A (2007) The thalidomide saga. Int J Biochem Cell Biol 39:1489–1499. doi:10.1016/j.biocel.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  72. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.0173

    Article  CAS  PubMed  Google Scholar 

  73. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178–182. doi:10.1016/j.tips.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  74. Peters J (2013) Polypharmacology-foe or friend? J Med Chem 56:8955–8971. doi:10.1021/jm400856t

    Article  CAS  PubMed  Google Scholar 

  75. Reddy AS, Zhang S (2013) Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 6:41–47. doi:10.1586/ecp.12.74

    Article  CAS  PubMed  Google Scholar 

  76. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, Dancey JE, Piccart-Gebhart MJ (2013) Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment of breast cancer. Cancer Treat Rev 39:935–946. doi:10.1016/j.ctrv.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  77. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. doi:10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  78. Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, Li G, Herlyn M (2005) The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10:2986–3001. doi:10.2741/1755

    Article  CAS  PubMed  Google Scholar 

  79. Jiang B, Liu L (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta Proteins Proteomics 1784:150–158. doi:10.1016/j.bbapap.2007.09.008

    Article  CAS  Google Scholar 

  80. Larsen M, Artym VV, Green JA, Yamada KM (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18:463–471. doi:10.1016/j.ceb.2006.08.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the National Research Foundation of South Africa for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Apostolides.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, A.S.P., Bester, M.J. & Apostolides, Z. Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol Divers 21, 809–820 (2017). https://doi.org/10.1007/s11030-017-9769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9769-0

Keywords

Navigation