Skip to main content
Log in

[TBP]2SO4 ionic liquid catalyst for 4MCR of pyridazinoindazole, indazolophthalazine and pyrazolophthalazine derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Tetrabutyl phosphonium sulfate ([TBP]2SO4), as novel room-temperature ionic liquid (RTIL), was synthesized by a simple cost-effective method, characterized by 1H, 13C, 31P NMR and FT-IR spectrophotometry. The newly prepared catalyst was used as an efficient catalyst in some four multicomponent reactions (4MCRs) e. g., to synthesis pyridazino[1,2-a]indazole, indazolo[2,1-b]phthalazine and pyrazolo[1,2-b]phthalazine. This green method has several advantages such as short reaction time, using simple methods to prepare catalysts and products, easy operation and high efficiency of products. In addition, the catalyst can be easily recovered and reused several times with reduced average activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Scheme 4

Similar content being viewed by others

References

  1. Sambert N, Duque MDMS, Plaquevent J-C, Génisson Y, Rodriguez J, Constantieux T (2011) Multicomponent reactions and ionic liquids: a perfect synergy for eco-compatible heterocyclic synthesis. Chem Soc Rev 40:1347–1357. https://doi.org/10.1039/c0cs00013b

    Article  CAS  Google Scholar 

  2. Habibi A, Ghanbari E, Yavari I (2019) Synthesis of thiazolidine derivatives via multicomponent reaction in the presence of Fe3O4@ SiO2–SO3H nanoparticles as a heterogeneous catalyst. Arkivoc Part vi:128–140

    Article  Google Scholar 

  3. Nejad MS, Seyedi N, Sheibani H, Behzadi S (2019) Synthesis and characterization of Ni (II) complex functionalized silica-based magnetic nanocatalyst and its application in C–N and C–C cross-coupling reactions. Mol Divers 23:527–539. https://doi.org/10.1007/s11030-018-9888-2

    Article  CAS  Google Scholar 

  4. Seyedi N, Khabazzadeh H, Saidi K (2009) Cu 1.5 PMo 12 O 40 as an efficient, mild and heterogeneous catalyst for the condensation of indole with carbonyl compounds. Mol Divers 13:337–342. https://doi.org/10.1007/s11030-009-9120-5

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh R, Maheswari S, Malecki JG, Lalitha A (2020) NaN3 catalyzed highly convenient access to functionalized 4H-chromenes: a green one-pot approach for diversity amplification. Polycycl Aromat Compd 5:1581–1594. https://doi.org/10.1080/10406638.2018.1564678

    Article  CAS  Google Scholar 

  6. Naidu Kalla RM, Karunakaran RS, Balaji M, Kim I (2019) Catalyst-free synthesis of xanthene and pyrimidine-fused heterocyclic derivatives at water-ethanol medium and their antioxidant properties. Chem Sel 4:644–649. https://doi.org/10.1002/slct.201803449

    Article  CAS  Google Scholar 

  7. Patil S, Mane A, Dhongade-Desai S (2019) CuO nanoparticles as a reusable catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. J Iran Chem Soc 16:1665–1675. https://doi.org/10.1007/s13738-019-01640-3

    Article  CAS  Google Scholar 

  8. Cioc RC, Ruijter E, Orru RV (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975. https://doi.org/10.1039/C4GC00013G

    Article  CAS  Google Scholar 

  9. Abdelmoniem AM, Ghozlan SA, Butenschön H, Abdelmoniem DM, Elwahy AH, Abdelhamid IA (2019) An efficient one-pot three-component synthesis of tetrakis (uracil) and their corresponding bis-fused derivatives. Arkivoc Part V:163–177. https://doi.org/10.24820/ark.5550190.p010.875

    Article  CAS  Google Scholar 

  10. Sheykhi-Estalkhjani A, Mahmoodi NO, Yahyazadeh A, Nadamani MP, Nahzomi HT (2019) Design, two-directional synthesis, DFT study of new pyrimido [5,4-d] pyrimidine-2,8-dione derivatives. Tetrahedron 75:749–756. https://doi.org/10.1016/j.tet.2018.12.057

    Article  CAS  Google Scholar 

  11. Sheykhi-Estalkhjani A, Mahmoodi NO, Yahyazadeh A, Nadamani MP (2018) Synthesis of new bis-benzylidene-hydrazides as a sensitive chromogenic sensor for naked-eye detection of CN¯ and AcO¯ ions. Tetrahedron 74:4868–4874. https://doi.org/10.1016/j.tet.2018.12.057

    Article  CAS  Google Scholar 

  12. Masihpour F, Zare A, Merajoddin M, Hasaninejad AA (2019) Highly effectual protocol for the production of triazolo[1,2-a]indazole-triones and 2-indazolo[2,1-b]phthalazine-triones using 1,3-disulfonic acid imidazolium hydrogen sulfate as a dual-functional catalyst. J Chem Technol Metall 54:23–29

    CAS  Google Scholar 

  13. Kidwai M, Jahan A, Chauhan R, Mishra NK (2012) Dodecylphosphonic acid (DPA): a highly efficient catalyst for the synthesis of 2H-indazolo [2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron Lett 53:1728–1731. https://doi.org/10.1016/j.tetlet.2012.01.095

    Article  CAS  Google Scholar 

  14. Khurana JM, Magoo D (2009) Efficient one-pot syntheses of 2H-indazolo[2,1-b]phthalazine-triones by catalytic H2SO4 in water–ethanol or ionic liquid. Tetrahedron Lett 50:7300–7303. https://doi.org/10.1080/17518253.2012.691183

    Article  CAS  Google Scholar 

  15. Turhan K, Turgut Z (2019) Efficient one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives catalyzed by Y(OTf)3. Russ J Organ Chem 55:250–253. https://doi.org/10.1134/S1070428019020180

    Article  CAS  Google Scholar 

  16. Mozafari R, Heidarizadeh F (2019) Phosphotungstic acid supported on SiO2@NHPhNH2 functionalized nanoparticles of MnFe2O4 as a recyclable catalyst for the preparation of tetrahydrobenzo[b]pyran and indazolo[2,1-b]phthalazine-triones. Polyhedron 162:263–276. https://doi.org/10.1016/j.poly.2019.01.065

    Article  CAS  Google Scholar 

  17. Iravani N, Keshavarz M, Parhami A (2019) Novel SO3H-functionalized phenanthrolinum-phosphotungstate ionic liquid for highly promoted three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones. Res Chem Intermed 45:5045–5066. https://doi.org/10.1007/s11164-019-03875-4

    Article  CAS  Google Scholar 

  18. Hamidinasab M, Mobinikhaledi A (2019a) Green one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-triones: a comparative study of heterogeneous solid acid catalysts with magnetic core. J Iran Chem Soc 16:1255–1263. https://doi.org/10.1007/s13738-019-01601-w

    Article  CAS  Google Scholar 

  19. Mosaddegh E, Hassankhani A (2011) A rapid, one-pot, four-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron Lett 52:488–490. https://doi.org/10.1016/j.tetlet.2010.08.099

    Article  CAS  Google Scholar 

  20. Hamidinasab M, Mobinikhaledi A (2019b) Organoacid-decorated NiFe2O4 nanoparticles: an efficient catalyst for green synthesis of 2H-indazolo[2,1-b]phthalazine-triones and pyrimido[1,2-a]benzimidazoles. Chem Sel 4:17–23. https://doi.org/10.1002/slct.201802413

    Article  CAS  Google Scholar 

  21. Pouramiri B, Far RG, Zahedifar M (2018) Acidic ionic liquids: highly efficient catalysts for one-pot four-component synthesis of pyrazolo [1,2-b]phthalazines under solvent-free conditions. Chem Heterocycl Compd 54:1056–1060. https://doi.org/10.1007/s10593-018-2391-y

    Article  CAS  Google Scholar 

  22. Shaikh MA, Farooqui M, Abed S (2018) [Bu3NH][HSO4] catalyzed: an eco-efficient synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones and 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Res Chem Intermed 44:5483–5500. https://doi.org/10.1007/s11164-018-3435-8

    Article  CAS  Google Scholar 

  23. Abdi Piralghar Z, Hashemi MM, Ezabadi A (2020) Synthesis and characterization of Brönsted acidic ionic liquid based on ethylamine as an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Polycycl Aromat Compd 46:2229–2246. https://doi.org/10.1007/s11164-020-04089-9

    Article  CAS  Google Scholar 

  24. Dhar A, Kumar NS, Sarkar K, Al-Fatesh AS, Ibrahim AA, Fakeeha AH, Vekariya RL (2019) Acidic ionic liquids containing variable cationic head groups for catalytic isomerization of n-hexane. J Mol Liq 288:111047. https://doi.org/10.1016/j.molliq.2019.111047

    Article  CAS  Google Scholar 

  25. Khaligh NG, Mihankhah T, Johan MR (2019) Synthesis of new low-viscous sulfonic acid-functionalized ionic liquid and its application as a Brönsted liquid acid catalyst for the one-pot mechanosynthesis of 4H-pyrans through the ball milling process. J Mol Liq 277:794–804. https://doi.org/10.1016/j.molliq.2019.01.024

    Article  CAS  Google Scholar 

  26. Darvishzad S, Daneshvar N, Shirini F, Tajik H (2019) Introduction of piperazine-1,4-diium dihydrogen phosphate as a new and highly efficient dicationic Brönsted acidic ionic salt for the synthesis of (thio)barbituric acid derivatives in water. J Mol Struct 1178:420–427. https://doi.org/10.1016/j.molstruc.2018.10.053

    Article  CAS  Google Scholar 

  27. Zabihzadeh M, Omidi A, Shirini F, Tajik H, Safarpoor Nikoo Langarudi M (2020) Introduction of an efficient DABCO-based bis-dicationic ionic salt catalyst for the synthesis of arylidenemalononitrile, pyran and polyhydroquinoline derivatives. J Mol Struct 1206:127730. https://doi.org/10.1016/j.molstruc.2020.127730

    Article  CAS  Google Scholar 

  28. Hua KM, Tran PH, Le TN (2019) An efficient and recyclable L-proline triflate ionic liquid catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the multi-component Biginelli reaction. Arkivoc Part vi. https://doi.org/10.24820/ark.5550190.p011.096

  29. Tabatabaeian K, Mamaghani M, Mahmoodi NO, Keshavarz E (2009) Ruthenium-catalyzed cross aldol reaction with aldehydes and ketones. Arkivoc 2:68–75. https://doi.org/10.3998/ark.5550190.0010.208

    Article  Google Scholar 

  30. Tabatabaeian K, Keshavarz E, Mamaghani M, Mahmoodi NO (2010) An efficient RuIII/BINAP catalytic system for the aldol reactions of ketones with various aldehydes. Arkivoc 4:155–162. https://doi.org/10.3998/ark.5550190.0011.914

    Article  Google Scholar 

  31. Mahmoodi NO, Khodaee Z (2007) Evaluating the one-pot synthesis of hydantoins. Arkivoc 3:29–36. https://doi.org/10.3998/ark.5550190.0008.304

    Article  Google Scholar 

  32. Mahmoodi N, Navrood MN (2007) Enantio-, regio-, and chemoselective reduction of aromatic a-diketones by baker’s yeast in diverse organic-water solvent systems. Arkivoc 3:37–45. https://doi.org/10.3998/ark.5550190.0008.305

    Article  Google Scholar 

  33. Tabatabaeian K, Mamaghani M, Mahmoodi N, Khorshidi A (2006) Efficient RuIII-catalyzed condensation of indoles and aldehydes or ketones. Can J Chem 84:1541–1545. https://doi.org/10.1139/v06-159

    Article  CAS  Google Scholar 

  34. Keßler MT, Gedig C, Sahler S, Wand P, Robke S, Prechtl MHG (2013) Recyclable nanoscale copper(i) catalysts in ionic liquid media for selective decarboxylative C–C bond cleavage. Catal Sci Technol 3:992–1001. https://doi.org/10.1039/C2CY20760E

    Article  Google Scholar 

  35. Pouramiri B, Kermani ET (2016) One-pot, four-component synthesis of new 3,4,7,8-tetrahydro-3,3-dimethyl-11-aryl-2H-pyridazino[1,2-a]indazole-1,6,9(11H)-triones and 2H-indazolo[2,1-b]phthalazine-1,6,11(13H)-triones using an acidic ionic liquid N, N-diethyl-N-sulfoethanammonium chloride ([Et3N–SO3H] Cl) as a highly efficient and recyclable catalyst. Tetrahedron Lett 57:1006–1010. https://doi.org/10.1016/j.tetlet.2016.01.074

    Article  CAS  Google Scholar 

  36. Amirmahani N, Mahmoodi NO, Malakootian M, Pardakhty A (2020) Introducing new and effective catalysts for the synthesis of pyridazino[1,2-a]indazole, indazolo[2,1-b]phthalazine and pyrazolo[1,2-b]phthalazine derivatives. MethodsX 7:100823. https://doi.org/10.1016/j.mex.2020.100823

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hasaninejed A, Kazerooni MR, Zare A (2012) Solvent-free, one-pot, four-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones using sulfuric acid-modified PEG-6000 as a green recyclable and biodegradable polymeric catalyst. Catal Today 196:148–155. https://doi.org/10.1016/j.cattod.2012.05.026

    Article  CAS  Google Scholar 

  38. Kiasat AR, Noorizadeh S, Ghahremani M, Saghanejad SJ (2013) Experimental and theoretical study on one-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones catalyzed by nano-alumina sulforic acid. J Mol Struct 1036:216–225. https://doi.org/10.1016/j.molstruc.2012.11.014

    Article  CAS  Google Scholar 

  39. Mazaahir K, Ritika C, Anwar J (2012) Efficient CAN catalyzed synthesis of 1H-indazolo[1,2-b]phthalazine-1,6,11-triones: an eco-friendly protocol. Sci Bull 57:2273–2279. https://doi.org/10.1007/s11434-012-5081-7

    Article  CAS  Google Scholar 

  40. Nagarapu L, Bantu R, Mereyala HB (2009) TMSCl-mediated one-pot, three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones. J Heterocycl Chem 46:728–731. https://doi.org/10.1002/jhet.135

    Article  CAS  Google Scholar 

  41. Safari N, Shirini F, Tajik H (2020) Preparation and characterization of a novel DABCO based tetra cationic ionic liquid as a reusable catalyst for the multi-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione and [1,2,4]triazoloquinazolinone derivatives under solvent-free condition. J Mol Struct 1201:127143. https://doi.org/10.1016/j.molstruc.2019.127143

    Article  CAS  Google Scholar 

  42. Shaterian HR, Hosseinian A, Ghashang M (2009) Reusable silica supported poly phosphoric acid catalyzed three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. Arkivoc 2:59–67. https://doi.org/10.3998/ark.5550190.0010.207

    Article  Google Scholar 

Download references

Acknowledgements

The authors express appreciation to University of Guilan, Faculty Research Committee for its support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nosrat O. Mahmoodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirmahani, N., Mahmoodi, N.O., Malakootian, M. et al. [TBP]2SO4 ionic liquid catalyst for 4MCR of pyridazinoindazole, indazolophthalazine and pyrazolophthalazine derivatives. Mol Divers 26, 15–25 (2022). https://doi.org/10.1007/s11030-020-10153-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10153-8

Keywords

Navigation