Skip to main content
Log in

Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Compact and dwarfing vining habits in melon (Cucumis melo L.; 2n = 2x = 24) may have commercial importance since they can contribute to the promotion of concentrated fruit set and can be planted in higher plant densities than standard vining types. A study was designed to determine the genetics of dwarfism associated with a diminutive (short internodes) melon mutant line PNU-D1 (C. melo ssp. cantalupensis). PNU-D1 was crossed with inbred wild-type melon line PNU-WT1 (C. melo ssp. agrestis), and resultant F1 progeny were then self-pollinated to produce an F2 population that segregated as dwarf and vining plant types. Primary stem length of F2 progeny assessed under greenhouse conditions indicated that a single recessive gene, designated mdw1, controlled dwarfism in this population. To identify the chromosomal location associated with mdw1, an simple sequence repeat (SSR)-based genetic linkage map was constructed using 94 F2 progeny. Using 76 SSR markers positioned on 15 linkage groups spanning 462.84 cM, the location of mdw1 was localized to Chromosome 7. Using the putative dwarfing-associated genes, fine genetic mapping of the mdw1 genomic region was facilitated with 1,194 F2 progeny that defined the genetic distance between mdw1 and cytokinin oxidase gene, a candidate gene for compact growth habit (cp) in cucumber, to be 1.7 cM. The candidate gene ERECTA (serin/threonine kinase) and UBI (ubiquitin) were also mapped to genomic regions flanking mdw1 at distances of 0.6 and 1.2 cM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Behera TK, Staub JE, Behera S, Mason S (2010) Response to phenotypic and marker-assisted selection for yield and quality component traits in cucumber (Cucumis sativus L.). Euphytica 171:417–425

    Article  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    Article  PubMed  CAS  Google Scholar 

  • Chen JG, Pandey S, Huang J, Alonso JM, Ecker JR, Assmann SM (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135:907–915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen JC, Gao Y, Jones AM (2006) Differential roles of Arabidopsis heterotrimeric G-protein subuntis in modulating cell division in roots. Plant Physiol 141:887–897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crienen J, Reuling G, Segers B, van de Wal M (2009) New cucumber plants with a compact growth habit. Patent, International publication number WO 2009/059777 A1

  • Diaz A, Fergany M, Formisano G et al (2011) An integrated linkage map for melon (Cucumis melo L.). BMC Plant Biol. http://www.biomedcentral.com/1471-2229/11/111

  • Dyutin KE, Afanas’eva EA (1987) Inheritance of the short vine trait in watermelon. Cytol Genet 21:71–73

    Google Scholar 

  • Edwards MD, Lower RL (1981a) Investigations into the characteristics of seeds from compact cucumber plants. Cucurbit Genet Coop Rpt 4:2–4

    Google Scholar 

  • Edwards MD, Lower RL (1981b) Variability for seed quality among fruit from individual compact cucumber plants. Cucurbit Genet Coop Rpt 4:4–5

    Google Scholar 

  • Edwards MD, Lower RL (1982) The genetic regulation of several seed traits in compact (cpcp) cucumbers—maternal vs. embryonic control. Cucurbit Genet Coop Rpt 5:8–9

    Google Scholar 

  • Edwards MD, Lower RL (1983) Effect of inbreeding on seed traits of compact cucumber. Cucurbit Genet Coop Rpt 6:5–7

    Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Fan Z, Robbins MD, Staub JE (2006) Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativus L.). Theor Appl Genet 112:843–855

    Article  PubMed  CAS  Google Scholar 

  • FAO (2013) FAOSTAT agricultural database. Food and Agriculture Organization of the United Nations, Rome, Italy. http://apps.fao.org. Accessed 23 May 2013

  • Fazio G, Chung SM, Staub JE (2003) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107:875–883

    Article  PubMed  CAS  Google Scholar 

  • Fukino N, Ohara T, Sugiyama M, Kubo N, Hirao M, Sakata Y, Matsumoto S (2012) Mapping of a gene that confers short lateral branching (slb) in melon (Cucumis melo L.). Euphytica 187:133–143

    Article  CAS  Google Scholar 

  • Guner N, Wehner TC (2003) Gene list for watermelon. Cucurbit Genet Coop Rpt 26:76–92

    Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Holst K, Schmulling T, Werner T (2011) Enhanced cytokinin degradation in leaf primordial of transgenic Arabidopsis plants reduces leaf size and shoot organ primordial formation. J Plant Physiol 168:1328–1334

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Zhang X, Wei Z, Li Q, Li X (1998) Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. Sci Hortic 74:175–181

    Article  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Hwang JH, Ahn SG, Oh JY, Choi YW, Kang JS, Park YH (2011) Functional characterization of watermelon (Citrullus lanatus L.) EST–SSR by gel electrophoresis and high resolution melting analysis. Sci Hortic 130:715–724

    Article  CAS  Google Scholar 

  • Kauffman CS, Lower RL (1976) Inheritance of an extreme dwarf plant type in the cucumber. J Am Soc Hortic Sci 101:150–151

    Google Scholar 

  • Kerje T, Grum M (2000) The origin of melon, Cucumis melo: a review of the literature. Acta Hortic 510:37–44

    Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  PubMed  CAS  Google Scholar 

  • Kim HT (1988) Studies on the improvement of fertilization program for muskmelon (Cucumis melo L.). Ph. D. thesis. Yeungnam University, South Korea

  • Knavel DE (1988) Ky-P, short-internode muskmelon. HortScience 23:224

    Google Scholar 

  • Knavel DE (1990) Inheritance of the main dwarf short-internode mutant muskmelon. HortScience 25:1274–1275

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • KOSTAT (2013) Statistics Korea. http://kostat.go.kr/. Accessed 7 April 2013

  • Kubicki B, Soltysiak U, Korzeniewska A (1986) Induced mutations in cucumber (Cucumis sativus L.) V. Compact type of growth. Genet Pol 27:289–298

    Google Scholar 

  • Lease KA, Lau NY, Schuster RA, Torii KU, Walker JC (2001) Receptor serine/threonine protein kinases in signaling: analysis of the Erecta receptor-like kinase of Arabidopsis thaliana. New Phytol 151:133–144

    Article  CAS  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRl1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  PubMed  CAS  Google Scholar 

  • Li D, Cuevas HE, Yang L, Li Y, Garcia-Mas J, Zalapa J, Staub JE, Luan F, Reddy U, He X, Gong Z, Weng Y (2011a) Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12:396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Yang L, Pathak M, Li D, He X, Weng Y (2011b) Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theor Appl Genet 123:973–983

    Article  PubMed  Google Scholar 

  • Lira-Saade R (1995) Cucurbita L. In: Estudios taxonómicos y ecogeográphicos de las Cucurbitaceae latinoamericanas de importancia económica. Systematics and Ecogeographic Studies on Crop Genepools 9, IPGRI, Rome

  • Liu PBW, Loy JB (1972) Inheritance and morphology of two dwarf mutants in watermelon. J Am Soc Hortic Sci 97:745–748

    Google Scholar 

  • Maynard DN, Elmstrom GW, Carle RB (2002) ‘El Dorado’ and ‘La Estrella’ compact plant tropical pumpkin hybrids. HortScience 37:831–833

    Google Scholar 

  • McCreight JD, Staub JE, Koppar NM, Srivastava UC (1993) Indo-US Cucumis germplasm expedition. HortScience 28:492

    Google Scholar 

  • Mohr HC (1956) Mode of inheritance of the bushy growth characteristics in watermelon. Proc Assoc South Agric Work 53:174

    Google Scholar 

  • Mohr HC, Sandhu MS (1975) Inheritance and morphological traits of a double recessive dwarf in watermelon, Citrullus lanatus (Thunb.) Mansf. J Am Soc Hortic Sci 100:135–137

    Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130:1152–1161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muangprom A, Stephen GT, Sun T, Thomas CO (2005) A novel dwarfing mutation in a green revolution gene from Brassica rapa. Plant Physiol 137:931–938

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Curcurbit Gen Coop Rpt 14:43–44

    Google Scholar 

  • Nerson H, Paris HS (2008) “Birdsnest” melons from Iran: germplasm for concentrated yield in time and position. Isreal J Plant Sci 56:245–256

    Article  Google Scholar 

  • Niemirowicz-Szczytt K, Rucinska M, Korzeniewsia A (1996) An induced mutation in cucumber: super compact. Cucurbit Genet Coop Rep 19:1–3

    Google Scholar 

  • Oh JY (2013) Genetic analysis and development of molecular markers of dwarf trait in melon (Cucumis melon L.). Ph. D. thesis. Gyeongsang National University, South Korea

  • Oki K, Inaba N, Kitano H, Takahashi S, Fujisawa Y, Kato H, Iwasaki Y (2009) Study of novel d1 allele, defective mutants of the α subunit of heterotrimeric G-protein in rice. Genes Genet Syst 84:35–42

    Article  PubMed  CAS  Google Scholar 

  • Paris HS, Karchi Z, Nerson H, Edelstein M, Govers A, Freudenberg D (1981) A new plant type in Cucumis melo L. Cucurbit Genet Coop Rep 4:24–26

    Google Scholar 

  • Paris HS, Nerson H, Karchi Z (1984) Genetics of internode length in melons. Heredity 75:403–406

    Google Scholar 

  • Paris HS, McCollum TG, Nerson H, Cantliffe DJ, Karchi Z (1985) Breeding of concentrated-yield muskmelons. J Hort Sci 60:335–339

    Google Scholar 

  • Qi Y, Sun Y, Xu L, Xu Y, Huang H (2004) ERECTA is required for protection against heat-stress in the AS1/AS2 pathway to regulate adaxial-abaxial leaf polarity in Arabidopsis. Planta 219:270–276

    Article  PubMed  CAS  Google Scholar 

  • Robbins MD, Casler M, Staub JE (2008) Pyramiding QTL for multiple lateral branching in cucumber using inbreed backcross lines. Mol Breed 22:131–139

    Article  Google Scholar 

  • Robinson PA, Ardley HC (2004) Ubiquitin-protein ligase. Cell Sci 117:5191–5194

    Article  CAS  Google Scholar 

  • Robinson RW, Mishanec W (1965) A new dwarf cucumber. Veg Imp Newslett 7:23

    Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellins metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schwessinger B, Roux M, Kadata Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C (2011) Phosphorylation-dependent differential regulation of plant growth cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7(4):e1002046. doi:10.1371/journal.pgen.1002046

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sebastian P, Schaefer H, Telford I, Renner S (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. PNAS. www.pnas.org/cgi/doi/10.1073/pnas.1005338107

  • Shpark ED, Lakeman MB, Torii KU (2003) Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA leucin-rich repeat receptor-like kinase signaling pathway that regulates organ shape. Plant Cell 15:1095–1110

    Article  Google Scholar 

  • Slomnicki I, Stein A, Nothmann J (1966) Exploration, collection and screening of indigenous and local varieties of vegetable crops cultivated in Turkey. Advance Report, Ford Foundation project no. 5/A4. The Volcani Institute of Agricultural Research, Rehovot, Israel

  • Son DM, Choi MS, Lim HK (1998) Effect of training method and number of fruit setting on the yield and quality of net melon in creeping culture. Korean J Hortic Sci Techol 16:420

    Google Scholar 

  • Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier RF, Komeda Y (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8:735–746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Torii KU, Hanson LA, Josefsson CAB, Shpak ED (2003) Regulation of inflorescence architecture and organ shape by the ERECTA gene in Arabidopsis. In: Sekimura T (ed) Morphogenesis and patterning in biological systems. Springer, Tokyo, pp 153–164

    Chapter  Google Scholar 

  • Uchida N, Igari K, Bogenschutz NL, Torii KU, Tasaka M (2011) Arabidopsis ERECTA-family receptor kinases mediate morphological alterations stimulated by activation of NB-NRR-type UNI proteins. Plant Cell Physiol 52:804–814

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the a subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97:11638–11643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Wang XQ, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K (2006) Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res 16:916–922

    Article  PubMed  Google Scholar 

  • Wu T, Zhou JH, Zhang YF, Cao JS (2007) Characterization and inheritance of a bush-type in tropical pumpkin (Cucurbita moschata Duchesne). Sci Hortic 114:1–4

    Article  Google Scholar 

  • Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ishiuchi D (1994) Suppressed-branching in melon, characteristics and its inheritance. In: The 24th international horticultural congress, Kyoto, pp 156

Download references

Acknowledgments

Following are results of a study on the “Leades INdustry-university Cooperation” Project, supported by the Ministry of Education (MOE). This work was supported by grants from the Technology Development Program for Agriculture and Forestry, Ministry for Food, Agriculture, Forestry, and Fisheries (Grants 109064-05-5-HD110), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Min Chung or Younghoon Park.

Additional information

Jihyun Hwang and Juyeol Oh have contributed equally to this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Oh, J., Kim, Z. et al. Fine genetic mapping of a locus controlling short internode length in melon (Cucumis melo L.). Mol Breeding 34, 949–961 (2014). https://doi.org/10.1007/s11032-014-0088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0088-1

Keywords

Navigation