Skip to main content
Log in

Behavior of a modified Dissociation element in barley: a tool for genetic studies and for breeding transgenic barley

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Maize-derived sequences from the transposable elements Activator (Ac) and Dissociation (Ds) have enabled studies of gene function via transposon tagging. The characteristics of modified, transgene-containing Ds elements constructed for some of these studies have demonstrated their ability to resolve complex loci, separate transgenes from marker genes and vector sequences, and to support high and heritable levels of transgene expression. To most efficiently design breeding schemes for developing transgenic populations via Ds-mediated transposition, detailed knowledge of the dynamics and characteristics of transposition in barley is necessary. Examination of a barley transposon tagging population (n = 4,954) derived from crosses of lines containing Ds-bar insertions to lines expressing Ac transposase showed that the frequencies of transposition from eight original Ds-bar loci ranged from 5 to 41 % among F2 individuals. Sequence analysis of Ds-bar terminal sequences and of flanking genomic sequences for 107 F2 and F3 individuals indicated precise integrations. Analysis of 173 flanking sequences derived from these populations and from previously produced populations, primarily using sequence-based methods, enabled the mapping of 159 to a specific chromosome and 136 to specific map locations. Of the 156 DsT loci that could be located to specific contigs, most were located in gene-rich areas and approximately 40 % were either in or near (within 1 kb) expressed sequences or predicted proteins. These data will enable the design of optimal breeding schemes for developing and using Ds-based systems for transposon tagging and for transgene delivery that are specific to barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    Article  CAS  PubMed  Google Scholar 

  • Bregitzer P, Brown RH (2013) Long-term assessment of transgene behavior in barley: Ds-mediated delivery of bar results in robust, stable, and heritable expression. In Vitro Cell Dev Biol Plant 49:231–237

    Article  CAS  Google Scholar 

  • Brown RH, Bregitzer P (2011) A Ds insertional mutant of a barley miR172 gene results in indeterminate spikelet development. Crop Sci 51:1664–1672

    Article  CAS  Google Scholar 

  • Brown RH, Dahleen LS, Bregitzer P (2012) An efficient method for flanking sequence isolation in barley. Crop Sci 52:1229–1234

    Article  CAS  Google Scholar 

  • Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V, Bregitzer P, Lemaux PG, Hayes PM (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Gen Genomics 272:181–193

    Article  CAS  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, Guiderdoni E (2002) Transposon-mediated generation of T-DNA and marker-free rice plants expressing a Bt endotoxin gene. Mol Breed 10:165–180

    Article  CAS  Google Scholar 

  • Cowperthwaite M, Park W, Xu Z, Yan X, Maurais SC, Dooner HK (2002) Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  • Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  CAS  PubMed  Google Scholar 

  • Dooner HK, Keller J, Harper E, Ralston E (1991) Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3:473–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Federoff NV (1989) Maize transposable elements. In: Howe M, Berg D (eds) Mobile DNA. ASM Press, Washington, pp 375–411

    Google Scholar 

  • Franckowiak JD, Foster AE, Peterson VD, Pyler RE (1985) Registration of Bowman barley. Crop Sci 25:883

    Article  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286–1292

    CAS  Google Scholar 

  • International Barley Genome Sequencing Consortium (2012) A physical, genetic, and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Article  Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H, Seki M, Shinozaki K (2002) A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones JDG, Gilbert DE, Grady KL, Jorgenson RA (1987) T-DNA structure and gene expression in petunia plants transformed by Agrobacterium C58 derivatives. Mol Gen Genet 207:478–485

    Article  CAS  Google Scholar 

  • Jorgensen R, Snyder C, Jones JDG (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:471–477

    Article  CAS  Google Scholar 

  • Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi G, Nam MH, Cha YS, Yun DW, Eun MY, Han C (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39:252–263

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization, and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  PubMed  Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jian S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:265–274

    Article  Google Scholar 

  • Koprek T, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    Article  CAS  PubMed  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krens FA, Mans RMW, van Slogteren TMS, Hoge JHC, Wullems GJ, Shilperoort RA (1985) Structure and expression of DNA transferred to tobacco via transformation of protoplasts with Ti-plasmid DNA: co-transfer of T-DNA and non T-DNA sequences. Plant Mol Biol 5:223–234

    Article  CAS  PubMed  Google Scholar 

  • Lange M, Vincze E, Møller MG, Holm PB (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep 25:815–820

    Article  CAS  PubMed  Google Scholar 

  • Lebel EG, Masson H, Bogucki A, Paszkoski J (1995) Transposable elements as plant transformation vectors for long stretches of foreign DNA. Theor Appl Genet 91:899–906

    CAS  PubMed  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  CAS  PubMed  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McElroy D, Louwerse JD, McElroy SM, Lemaux PG (1997) Development of a simple transient assay for Ac/Ds activity in cells of intact barley tissue. Plant J 11:157–165

    Article  CAS  PubMed  Google Scholar 

  • Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) A high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Ziv M, Lemaux PG (2006) Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol Biol 62:15–28

    Article  CAS  PubMed  Google Scholar 

  • Morino K, Olsen O-A, Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J 17:275–285

    Article  CAS  PubMed  Google Scholar 

  • Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M (2009) Molecular characterization of mutations induced by gamma irradiation in rice. Genes Genet Syst 84:361–370

    Article  CAS  PubMed  Google Scholar 

  • Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, Gundlach H, Spannagl M (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Page DR, Köhler C, da Costa-Nunes J, Baroux C, Moore JM, Grossniklaus U (2004) Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proc Natl Acad Sci USA 101:2969–2974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmusson DC, Wilcoxson RW (1979) Registration of Morex barley. Crop Sci 19:293

    Article  Google Scholar 

  • Rinehart TA, Dean C, Weil CF (1997) Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J 12:1419–1427

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Lithwick G, Levy AA (2001) The structure and evolution of the hAT transposon superfamily. Genetics 158:949–957

    PubMed Central  CAS  PubMed  Google Scholar 

  • Scholz S, Lörz H, Lütticke S (2001) Transposition of the maize transposable element Ac in barley (Hordeum vulgare L.). Mol Gen Genet 264:653–661

    Article  CAS  PubMed  Google Scholar 

  • Scott L, LaFoe D, Weil CF (1996) Adjacent sequences influence DNA repair accompanying transposon excision in maize. Genetics 142:237–246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sigurbjorsson B, Micke A (1969) Progress in mutation breeding. In: Induced mutation in plants. Proceedings of an international symposium on the nature, induction, and utilization of mutation in plants. International Atomic Energy Agency, Vienna, pp 673–697

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:93–950

    Article  Google Scholar 

  • Singh S, Tan HQ, Singh J (2012) Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 12:131–141

    Article  CAS  PubMed  Google Scholar 

  • Somers DA, Makarevitch I (2004) Transgene integration in plants: poking or patching holes in promiscuous genomes. Curr Opin Biotechnol 15:126–131

    Article  CAS  PubMed  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takano M, Egawa H, Ikeda J-E, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361

    Article  CAS  PubMed  Google Scholar 

  • Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Zhu Q-H, Zhou X-R, Eamens AL, Hoque MS, Ramm K, Shivakkumar R, Smith KF, Pan S-T, Li S, Peng K, Kim SJ, Dennis ES (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP (2010) Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22:1667–1685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol Mol Biol 43:49–82

    Article  CAS  Google Scholar 

  • Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H, Martis M, Steuemagel B, Scholz U, Šmiková H, Kubaláková M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Doležel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23:1706–1718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao Y-L, Peterson T (2002) Ac transposition is impaired by a small terminal deletion. Mol Genet Genomics 266:720–731

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47:811–826

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Agricultural Research Service, USDA, projects 5366-21000-031-00D and 5442-21000-036-00D. The USDA-ARS is an equal opportunity employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Bregitzer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, R.H., Singh, J., Singh, S. et al. Behavior of a modified Dissociation element in barley: a tool for genetic studies and for breeding transgenic barley. Mol Breeding 35, 85 (2015). https://doi.org/10.1007/s11032-015-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0193-9

Keywords

Navigation