Skip to main content
Log in

Caffeine does not enhance radiosensitivity of normal liver tissue in vivo

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to determine whether caffeine enhanced radiosensitivity of normal liver tissue in a rat radiation-induced liver disease model. Buffalo rat McA-RH7777 hepatocellular cancer cells and BRL3A normal liver cells were irradiated, and cell cycle distribution and apoptosis rates were analyzed. A rat model of radiation-induced liver disease was established, rats were randomized into four groups: control; caffeine alone; irradiation (IR) alone; and caffeine plus IR (Caff + IR) group. Apoptosis rates in normal rat liver tissue after IR were evaluated by TUNEL staining and caspase-3 Western blot. Transaminase activity was measured and histopathological examination was done after IR. Caffeine abrogated IR-induced G2 phase arrest (Caff + IR vs. IR: 40.9 ± 4.0 vs. 60.7 ± 5.5%, at 12 h after IR) and increased apoptosis rates (Caff + IR vs. IR: 56.1 ± 6.8 vs. 35.5 ± 4.0%, at 72 h after IR) in McA-RH7777 cells, but did not affect IR-induced G2 phase arrest and apoptosis rates at any time point after IR in BRL3A cells. Caffeine did not enhance apoptosis, transaminase activity, or histopathological injury of normal rat liver tissue at any time points after IR. This study suggests that caffeine might not enhance radiosensitivity of normal liver tissue in vivo. In an earlier study, we reported that caffeine enhanced radiosensitivity of human hepatocellular cancer in a nude mice model. Together, these results offer feasibility of clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeng ZC, Tang ZY, Fan J, Zhou J, Qin LX, Ye SL, Sun HC, Wang BL, Yu Y, Wang JH, Guo W (2004) A comparison of chemo embolization combination with and without radiotherapy for un-resectable hepatocellular carcinoma. Cancer J (Sudbury) 10(5):307–316

    Article  Google Scholar 

  2. Mornex F, Girard N, Beziat C, Kubas A, Khodri M, Trepo C, Merle P (2006) Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies—mature results of the French phase ii rtf-1 trial. Int J Radiat Oncol Biol Phys 66(4):1152–1158

    Article  PubMed  Google Scholar 

  3. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF (1995) Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 31(5):1237–1248

    Article  PubMed  CAS  Google Scholar 

  4. Antoch G, Kaiser GM, Mueller AB, Metz KA, Zhang H, Kuehl H, Westermann S, Broelsch CE, Mueller SP, Bockisch A, Debatin JF (2004) Intraoperative radiation therapy in liver tissue in a pig model: monitoring with dual-modality pet/ct. Radiology 230(3):753–760

    Article  PubMed  Google Scholar 

  5. Hwang A, Muschel RJ (1998) Radiation and the g2 phase of the cell cycle. Radiat Res 150(5 Suppl):S52–S59

    Article  PubMed  CAS  Google Scholar 

  6. Barratt RA, Kao G, McKenna WG, Kuang J, Muschel RJ (1998) The g2 block induced by DNA damage: a caffeine-resistant component independent of cdc25c, mpm-2 phosphorylation, and h1 kinase activity. Cancer Res 58(12):2639–2645

    PubMed  CAS  Google Scholar 

  7. Iliakis G, Wang Y, Guan J, Wang H (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22(37):5834–5847

    Article  PubMed  CAS  Google Scholar 

  8. Choi EK, Ji IM, Lee SR, Kook YH, Griffin RJ, Lim BU, Kim JS, Lee DS, Song CW, Park HJ (2006) Radiosensitization of tumor cells by modulation of atm kinase. Int J Radiat Biol 82(4):277–283

    Article  PubMed  CAS  Google Scholar 

  9. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT (1999) Inhibition of atm and atr kinase activities by the radio sensitizing agent, caffeine. Cancer Res 59(17):4375–4382

    PubMed  CAS  Google Scholar 

  10. Blasina A, Price BD, Turenne GA, McGowan CH (1999) Caffeine inhibits the checkpoint kinase atm. Curr Biol 9(19):1135–1138

    Article  PubMed  CAS  Google Scholar 

  11. Yao SL, Akhtar AJ, McKenna KA, Bedi GC, Sidransky D, Mabry M, Ravi R, Collector MI, Jones RJ, Sharkis SJ, Fuchs EJ, Bedi A (1996) Selective radiosensitization of p53-deficient cells by caffeine-mediated activation of p34cdc2 kinase. Nat Med 2(10):1140–1143

    Article  PubMed  CAS  Google Scholar 

  12. Higuchi K, Mitsuhashi N, Saitoh J, Maebayashi K, Sakurai H, Akimoto T, Niibe H (2000) Caffeine enhanced radiosensitivity of rat tumor cells with a mutant-type p53 by inducing apoptosis in a p53-independent manner. Cancer Lett 152(2):157–162

    Article  PubMed  CAS  Google Scholar 

  13. Palayoor ST, Macklis RM, Bump EA, Coleman CN (1995) Modulation of radiation-induced apoptosis and g2/m block in murine t-lymphoma cells. Radiat Res 141(3):235–243

    Article  PubMed  CAS  Google Scholar 

  14. Busse PM, Bose SK, Jones RW, Tolmach LJ (1978) The action of caffeine on x-irradiated hela cells III. Enhancement of x-ray-induced killing during g2 arrest. Radiat Res 76(2):292–307

    Article  PubMed  CAS  Google Scholar 

  15. Blanchard J, Sawers SJ (1983) The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol 24(1):93–98

    Article  PubMed  CAS  Google Scholar 

  16. Wang TJ, Liu ZS, Zeng ZC, Du SS, Qiang M, Zhang SM, Zhang ZY, Tang ZY, Wu WZ, Zeng HY (2010) Caffeine enhances radiosensitization to orthotopic transplant lm 3 hepatocellular carcinoma in vivo. Cancer sci 101(6):1440–1446

    Article  PubMed  CAS  Google Scholar 

  17. Jha MN, Bamburg JR, Bernstein BW, Bedford JS (2002) Caffeine eliminates gamma-ray-induced g2-phase delay in human tumor cells but not in normal cells. Radiat Res 157(1):26–31

    Article  PubMed  CAS  Google Scholar 

  18. Du SS, Qiang M, Zeng ZC, Ke AW, Ji Y, Zhang ZY, Zeng HY, Liu ZS (2009) Inactivation of Kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis. Int J Radiat Oncol Biol Phys 76(4):1225–1234

    Google Scholar 

  19. Suzuki S, Toledo-Pereyra LH, Rodriguez FJ, Cejalvo D (1993) Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of fk506 and cyclosporine. Transplantation 55(6):1265–1272

    Article  PubMed  CAS  Google Scholar 

  20. Canman CE, Gilmer TM, Coutts SB, Kastan MB (1995) Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev 9(5):600–611

    Article  PubMed  CAS  Google Scholar 

  21. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, Smorodinsky NI, Prives C, Reiss Y, Shiloh Y, Ziv Y (1998) Enhanced phosphorylation of p53 by atm in response to DNA damage. Science 281(5383):1674–1677

    Article  PubMed  CAS  Google Scholar 

  22. Brown EJ, Baltimore D (2003) Essential and dispensable roles of atr in cell cycle arrest and genome maintenance. Genes Dev 17(5):615–628

    Article  PubMed  CAS  Google Scholar 

  23. Taylor WR, Stark GR (2001) Regulation of the g2/m transition by p53. Oncogene 20(15):1803–1815

    Article  PubMed  CAS  Google Scholar 

  24. Zhao H, Piwnica-Worms H (2001) Atr-mediated checkpoint pathways regulate phosphorylation and activation of human chk1. Mol Cell Biol 21(13):4129–4139

    Article  PubMed  CAS  Google Scholar 

  25. Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD, Zhou BB (1999) Mammalian chk2 is a downstream effector of the atm-dependent DNA damage checkpoint pathway. Oncogene 18(28):4047–4054

    Article  PubMed  CAS  Google Scholar 

  26. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, Elledge SJ (1997) Conservation of the chk1 checkpoint pathway in mammals: linkage of DNA damage to cdk regulation through cdc25. Science 277(5331):1497–1501

    Article  PubMed  CAS  Google Scholar 

  27. Blasina A, Paegle ES, McGowan CH (1997) The role of inhibitory phosphorylation of cdc2 following DNA replication block and radiation-induced damage in human cells. Mol Biol Cell 8(6):1013–1023

    PubMed  CAS  Google Scholar 

  28. Theron T, Bohm L (1998) Cyclin b1 expression in response to abrogation of the radiation-induced g2/m block in hela cells. Cell Prolif 31(2):49–57

    Article  PubMed  CAS  Google Scholar 

  29. Murnane JP (1995) Cell cycle regulation in response to DNA damage in mammalian cells: a historical perspective. Cancer Metastasis Rev 14(1):17–29

    Article  PubMed  CAS  Google Scholar 

  30. Lopez-Saez JF, de La Torre C, Pincheira J, Gimenez-Martin G (1998) Cell proliferation and cancer. Histol Histopathol 13(4):1197–1214

    PubMed  CAS  Google Scholar 

  31. Tse RV, Guha C, Dawson LA (2008) Conformal radiotherapy for hepatocellular carcinoma. Crit Rev Oncol Hematol 67(2):113–123

    Article  PubMed  CAS  Google Scholar 

  32. Gu K, Zhao JD, Ren ZG, Ma NY, Lai ST, Wang J, Liu J, Jiang GL (2010) A natural process of cirrhosis resolution and deceleration of liver regeneration after thio acetamide withdrawal in a rat model. Mol Biol Rep. doi:10.1007/s11033-010-0281-1

  33. Dinić S, Bogojević D, Petrović M, Poznanović G, Ivanovic-Matić S, Mihailović M (2005) C/EBP alpha and C/EBP beta regulate haptoglobin gene expression during rat liver development and the acute-phase response. Mol Biol Rep 32(3):141–147

    Article  PubMed  Google Scholar 

  34. Zimmerman HJ (1993) Hepatotoxicity. Dis Mon 39(10):675–787

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China, no. 30770636.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Chong Zeng.

Additional information

Tie-Jun Wang and Zhong-Shan Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TJ., Liu, ZS., Zeng, ZC. et al. Caffeine does not enhance radiosensitivity of normal liver tissue in vivo. Mol Biol Rep 38, 4359–4367 (2011). https://doi.org/10.1007/s11033-010-0563-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0563-7

Keywords

Navigation