Skip to main content
Log in

Expression and genome polymorphism of ACSL1 gene in different pig breeds

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Acyl coenzyme A long-chain 1 synthetase (ACSL1) plays a key role in animal fat synthesis and fatty acid β-oxidation. In order to research the function of the ACSL1 gene in pig, we analyzed the mRNA expression in liver, backfat and longissimus dorsi muscle by quantitative real-time PCR in Tibet pig (TP, n = 10), Diannan small ear pig (DSP, n = 10) and large white pig (LW, n = 10). The results showed that the mRNA expressions of the ACSL1 gene in liver and longissimus dorsi muscle of DSP and TP were significant higher than that of LW (P < 0.01). However, the expression in backfat of LW was significant higher than that of TP (P < 0.01) and DSP (P < 0.05). In addition, four SNPs located in 5′ flanking region (T-1191C), exon 6(G173A), exon 14(C36T) and exon 17(T46C) were identified, and the allele frequencies of the four SNPs were significant different in indigenous and introduced pig breeds. The results indicated that the ACSL1 gene might be relative to the capacity of fat deposition and meat quality in pig breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Li L (2009) Genomic characterization and polymorphism analysis of genes involved in lipid- and energy metabolism in swine. Ph D Thesis, Technische Universität München, Germany

  2. Ding ST, Schinkel AP, Weber TE, Mersmann HJ (2000) Expression of porcine transcription factors and genes related to fatty acid metabolism in different tissues and genetic populations. J Anim Sci 78:2127–2134

    CAS  PubMed  Google Scholar 

  3. Reiter SS, Halsey CHC, Stronach BM, Bartosh JL, Owsley WF, Bergen WG (2007) Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain pigs. Comp Biochem Phys D 2:200–206

    Google Scholar 

  4. Scott RA, Cornelius SG, Mersmann HJ (1981) Effects of age on lipogenesis and lipolysis in lean and obese swine. J Anim Sci 52:505–511

    CAS  PubMed  Google Scholar 

  5. Watkins PA (1997) Fatty acid activation. Prog Lipid Res 36:55–83

    Article  CAS  PubMed  Google Scholar 

  6. Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA (2000) Very long-chain acyl-CoA synthetases: human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem 275:35162–35169

    Article  CAS  PubMed  Google Scholar 

  7. Mashek DG, Bornfeldt KE, Coleman RA, Berger J, Bernlohr DA, Black P, DiRusso CC, Farber SA, Guo W, Hashimoto N, Khodiyar V, Kuypers FA, Maltais LJ, Nebert DW, Renieri A, Schaffer JE, Stahl A, Watkins PA, Vasiliou V, Yamamoto TT (2004) Revised nomenclature for the mammalian long chain acyl-CoA synthetase gene family. J Lipid Res 45:1958–1961

    Article  CAS  PubMed  Google Scholar 

  8. Mercade A, Estelle J, Perez-Enciso M, Varona L, Silio L, Noguera JL, Sanchez A, Folch JM (2006) Characterization of the porcine acyl-CoA synthetase long-chain 4 gene and its association with growth and meat quality traits. Anim Genet 37:219–224

    Article  CAS  PubMed  Google Scholar 

  9. Grand RJ (1989) Acylation of viral and eukaryotic proteins. Biochem J 258:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glick BS, Rothman JE (1987) Possible role for fatty acyl-coenzyme A in intracellular protein transport. Nature 326:309–312

    Article  CAS  PubMed  Google Scholar 

  11. Prentki M, Corkey BE (1996) Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283

    Article  CAS  PubMed  Google Scholar 

  12. Li QL, Yamamoto N, Inoue A, Morisawa S (1990) Fatty acyl-CoAs are potent inhibitors of the nuclear thyroid hormone receptor in vitro. J Biochem (Tokyo) 107:699–702

    CAS  Google Scholar 

  13. Tomoda H, Igarashi K, Cyong J-C, Omura S (1991) Evidence for an essential role of long chain acyl-CoA synthetase in animal cell proliferation: inhibition of long chain acyl-CoA synthetase by triacsins caused inhibition of Raji cell proliferation. J Biol Chem 266:4214–4219

    CAS  PubMed  Google Scholar 

  14. Kang MJ, Fujino T, Sasano H, Minekura H, Yabuki N, Nagura H, Iijima H, Yamamoto TT (1997) A novel arachidonate-preferring acyl-CoA synthetase is present in steroidogenic cells of the rat adrenal, ovary, and testis. Proc Natl Acad Sci USA 94:2880–2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oikawa E, Iijima H, Suzuki T, Sasano H, Sato H, Kamataki A, Nagura H, Kang MJ, Fujino T, Suzuki H, Yamamoto TT (1998) A novel acyl-CoA synthetase, ACS5, expressed in intestinal epithelial cells and proliferating preadipocytes. J Biochem (Tokyo) 124:679–685

    Article  CAS  Google Scholar 

  16. Suzuki H, Kawarabayasi Y, Kondo J, Abe T, Nishikawa K, Kimura S, Hashimoto T, Yamamoto T (1990) Structure and regulation of rat longchain acyl-CoA synthetase. J Biol Chem 265:8681–8685

    CAS  PubMed  Google Scholar 

  17. Fujino T, Kang MJ, Suzuki H, Iijima H, Yamamoto T (1996) Molecular characterization and expression of rat acyl-CoA synthetase 3. J Biol Chem 271:16748–16752

    Article  CAS  PubMed  Google Scholar 

  18. Fujino T, Yamamoto T (1992) Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain. J Biochem (Tokyo) 111:197–203

    CAS  Google Scholar 

  19. de Jong H, Neal AC, Coleman RA, Lewin TM (2007) Ontogeny of mRNA expression and activity of long-chain acyl-CoA synthetase (ACSL) isoforms in Mus musculus heart. Biochim Biophys Acta 1771:75–82

    Article  CAS  PubMed  Google Scholar 

  20. Marszalek JR, Kitidis C, Dararutana A, Lodish HF (2004) Acyl CoA synthetase 2 (ACS2) over-expression enhances fatty acid internalization and neurite outgrowth. J Biol Chem 279:23882–23891

    Article  CAS  PubMed  Google Scholar 

  21. Chiu HC, Kovacs A, Ford DA, Hsu FF, Garcia R, Herrero P, Saffitz JE, Schaffer JE (2001) A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 107:813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parkes HA, Preston E, Wilks D, Ballesteros M, Carpenter L, Wood L, Kraegen EW, Furler SM, Cooney GJ (2006) Overexpression of acyl-CoA synthetase-1 increases lipid deposition in hepatic (HepG2) cells and rodent liver in vivo. Am J Physiol Endocrinol Metab 291:E737–E744

    Article  CAS  PubMed  Google Scholar 

  23. Vidal O, Amills M (2004) Assignment of the fatty acid coenzyme A ligase, long chain 2 (FACL2) gene to porcine chromosome 15. Anim Genet 35:245

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  25. Malathi B, Aryamani B, Robert AT, Leo SL, James DT (2008) Evaluation and validation of housekeeping genes in response to ionizing radiation and chemical exposure for normalizing RNA expression in real-time PCR. Mutat Res 649:126–134

    Article  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Cheng P (1984) Livestock breeds of China-animal production and health paper, vol 46. FAO, Rome, p 217 E, F, S

    Google Scholar 

  28. Jian-jun G, Zhi-ping H, Zheng que L, Xue-bin L, San-cheng Y, Xiao-hui C (2007) Investigation on fattening and carcass traits in Tibetan pig and its combinations. Southwest China J Agric Sci (Chinese Article) 20:1109–1112

    Google Scholar 

  29. Pan PW, Zhao SH, Yu M, Xiong TA, Li K (2003) Identification of differentially expressed genes in the longissimus dorsi tissue between Duroc and Erhualian pigs by mRNA differential display. Asian-Aust J Anim Sci 16:1066–1070

    Article  CAS  Google Scholar 

  30. Plastow GS, Carrión D, Gil M, Garía-Regueiro JA, Furnols MFI, Gispert M, Oliver MA, Velarde A, Guàrdia MD, Hortós M, Rius MA, Sárraga C, Díaz I, Valero A, Sosnicki A, Klont R, Dornan S, Wilkinson JM, Evans G, Sargent C, Davey G, Connolly D, Houeix B, Maltin CM, Hayes HE, Anandavijayan V, Foury A, Geverink N, Cairns M, Tilley RE, Mormède P, Blott SC (2005) Quality pork genes and meat production. Meat Sci 70:409–421

    Article  CAS  PubMed  Google Scholar 

  31. Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ (1998) Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 273:5678–5684

    Article  CAS  PubMed  Google Scholar 

  32. Djouadi F, Brandt JM, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelly DP (1999) The role of the peroxisome proliferator-activated receptor alpha (PPAR alpha) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fatty Acids 60:339–343

    Article  CAS  PubMed  Google Scholar 

  33. Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366

    CAS  PubMed  Google Scholar 

  34. Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202

    Article  CAS  PubMed  Google Scholar 

  35. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J (1997) Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPAR alpha and PPAR gamma activators. J Biol Chem 272:28210–28217

    Article  CAS  PubMed  Google Scholar 

  36. Hoekstra M, Kruijt JK, Van Eck M, Van Berkel TJ (2003) Specific gene expression of ATP-binding cassette transporters and nuclear hormone receptors in rat liver parenchymal, endothelial, and Kupffer cells. J Biol Chem 278:25448–25453

    Article  CAS  PubMed  Google Scholar 

  37. Peters JM, Rusyn I, Rose ML, Gonzalez FJ, Thurman RG (2000) Peroxisome proliferator-activated receptorα is restricted to hepatic parenchymal cells, not Kupffer cells: implications for the mechanism of action of peroxisome proliferators in hepatocarcinogenesis. Carcinogenesis 21:823–826

    Article  CAS  PubMed  Google Scholar 

  38. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  PubMed  Google Scholar 

  39. Chhabra A, Mikkola KAH (2011) Return to youth with Sox17. Genes Dev 25:1557–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. He S, Kim I, Lim MS, Morrison SJ (2011) Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes Dev 25:1613–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vidal O, Sánchez A, Amills M, Noguera JL (2007) Nucleotide sequence and polymorphism of the pig acyl coenzyme A synthetase long-chain 1 (ACSL1) gene. Anim Biotechnol 18:117–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Major Special Project on New Varieties Cultivation for Transgenic Organisms (No. 2011ZX08009-003-006) the National Natural Science Foundation of China (U1036604 and 31160441). And we thank the Yunnan Agricultural University and Tibet Agricultural and Animal Sciences College of the help for the samples collecting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Tao, Z., Shi, L. et al. Expression and genome polymorphism of ACSL1 gene in different pig breeds. Mol Biol Rep 39, 8787–8792 (2012). https://doi.org/10.1007/s11033-012-1741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1741-6

Keywords

Navigation