Skip to main content
Log in

Overexpression of Six1 leads to retardation of myogenic differentiation in C2C12 myoblasts

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Six1 homeoprotein belongs to the Six (sine oculis) transcription factor family, the members of which are known to act as master regulators of development. Six1 is essential for promoting myogenesis during mammalian somitogenesis. Previous studies have shown that Six1 participates in later steps of myogenic differentiation by enhancing early activation of myogenin via binding to the Mef3 site of the myogenin promoter. In the present study, however, we show that overexpression of Six1 via retroviral infection suppresses the expression of myogenin and myosin in C2C12 myoblasts, consequently retarding myogenic differentiation without affecting cell proliferation or expression of Mef2 and Mef3. These findings further demonstrate the functional role of Six1 in myogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bryson-Richardson RJ, Currie PD (2008) The genetics of vertebrate myogenesis. Nat Rev Genet 9(8):632–646

    Article  PubMed  CAS  Google Scholar 

  2. Kumar JP (2009) The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci 66(4):565–583

    Article  PubMed  CAS  Google Scholar 

  3. Seo HC, Curtiss J et al (1999) Six class homeobox genes in drosophila belong to three distinct families and are involved in head development. Mech Dev 83(1–2):127–139

    Article  PubMed  CAS  Google Scholar 

  4. Coletta RD, Christensen K et al (2004) The Six1 homeoprotein stimulates tumorigenesis by reactivation of cyclin A1. Proc Natl Acad Sci U S A 101(17):6478–6483

    Article  PubMed  CAS  Google Scholar 

  5. Mok GF, Sweetman D (2010) Many routes to the same destination: lessons from skeletal muscle development. Reproduction 141(3):301–312

    Article  PubMed  Google Scholar 

  6. El-Hashash AH, Al Alam D et al (2011) Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 353(2):242–258

    Article  PubMed  CAS  Google Scholar 

  7. Guo C, Sun Y et al (2011) A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J Clin Invest 121(4):1585–1595

    Article  PubMed  CAS  Google Scholar 

  8. Scimone ML, Srivastava M et al (2011) A regulatory program for excretory system regeneration in planarians. Development 138(20):4387–4398

    Article  PubMed  CAS  Google Scholar 

  9. Farabaugh SM, Micalizzi DS et al (2011) Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene 31(5):552–562

    PubMed  Google Scholar 

  10. McCoy EL, Iwanaga R et al (2009) Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 119(9):2663–2677

    Article  PubMed  CAS  Google Scholar 

  11. Micalizzi DS, Christensen KL et al (2009) The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling. J Clin Invest 119(9):2678–2690

    Article  PubMed  CAS  Google Scholar 

  12. Grifone R, Laclef C et al (2004) Six1 and Eya1 expression can reprogram adult muscle from the slow-twitch phenotype into the fast-twitch phenotype. Mol Cell Biol 24(14):6253–6267

    Article  PubMed  CAS  Google Scholar 

  13. Niro C, Demignon J et al (2010) Six1 and Six4 gene expression is necessary to activate the fast-type muscle gene program in the mouse primary myotome. Dev Biol 338(2):168–182

    Article  PubMed  CAS  Google Scholar 

  14. Richard AF, Demignon J et al (2011) Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Dev Biol 359(2):303–320

    Article  PubMed  CAS  Google Scholar 

  15. Laclef C, Souil E et al (2003) Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 120(6):669–679

    Article  PubMed  CAS  Google Scholar 

  16. Xu PX, Zheng W et al (2002) Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129(13):3033–3044

    PubMed  CAS  Google Scholar 

  17. Li X, Oghi KA et al (2003) Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426(6964):247–254

    Article  PubMed  CAS  Google Scholar 

  18. Giordani J, Bajard L et al (2007) Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc Natl Acad Sci U S A 104(27):11310–11315

    Article  PubMed  CAS  Google Scholar 

  19. Fougerousse F, Durand M et al (2002) Six and Eya expression during human somitogenesis and MyoD gene family activation. J Muscle Res Cell Motil 23(3):255–264

    Article  PubMed  CAS  Google Scholar 

  20. Shen H, McElhinny AS et al (2006) The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 20(6):675–688

    Article  PubMed  CAS  Google Scholar 

  21. Nakatani Y, Ogryzko V (2003) Immunoaffinity purification of mammalian protein complexes. Methods Enzymol 370:430–444

    Article  PubMed  CAS  Google Scholar 

  22. Ruf RG, Xu PX et al (2004) SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proc Natl Acad Sci U S A 101(21):8090–8095

    Article  PubMed  CAS  Google Scholar 

  23. Lu J, McKinsey TA et al (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 97(8):4070–4075

    Article  PubMed  CAS  Google Scholar 

  24. Ohto H, Kamada S et al (1999) Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19(10):6815–6824

    PubMed  CAS  Google Scholar 

  25. Spitz F, Demignon J et al (1998) Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc Natl Acad Sci U S A 95(24):14220–14225

    Article  PubMed  CAS  Google Scholar 

  26. Yun K, Wold B (1996) Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8(6):877–889

    Article  PubMed  CAS  Google Scholar 

  27. Pownall ME, Gustafsson MK et al (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783

    Article  PubMed  CAS  Google Scholar 

  28. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  PubMed  CAS  Google Scholar 

  29. Bismuth K, Relaix F (2010) Genetic regulation of skeletal muscle development. Exp Cell Res 316(18):3081–3086

    Article  PubMed  CAS  Google Scholar 

  30. Salmon M, Owens GK et al (2009) Over-expression of the transcription factor, ZBP-89, leads to enhancement of the C2C12 myogenic program. Biochim Biophys Acta 1793(7):1144–1155

    Article  PubMed  CAS  Google Scholar 

  31. Liu Y, Chu A et al (2010) Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation. Nucleic Acids Res 38(20):6857–6871

    Article  PubMed  CAS  Google Scholar 

  32. Yajima H, Motohashi N et al (2010) Six family genes control the proliferation and differentiation of muscle satellite cells. Exp Cell Res 316(17):2932–2944

    Article  PubMed  CAS  Google Scholar 

  33. Ridgeway AG, Wilton S et al (2000) Myocyte enhancer factor 2C and myogenin up-regulate each other’s expression and induce the development of skeletal muscle in P19 cells. J Biol Chem 275(1):41–46

    Article  PubMed  CAS  Google Scholar 

  34. Himeda CL, Ranish JA et al (2004) Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 24(5):2132–2143

    Article  PubMed  CAS  Google Scholar 

  35. Zhang H, Stavnezer E (2009) Ski regulates muscle terminal differentiation by transcriptional activation of Myog in a complex with Six1 and Eya3. J Biol Chem 284(5):2867–2879

    Article  PubMed  CAS  Google Scholar 

  36. Halevy O, Novitch BG et al (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267(5200):1018–1021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Yoshihiro Nakatani, Pin-Xian Xu, Eric Olson, Kiyoshi Kawakami and Pascal Maire for kindly providing the materials listed in the text. We thank Jenny Huang for the critical reading of our paper. This study was sponsored by the National Natural Science Foundation of China (81170891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxuan Shen.

Additional information

Zhixue Li, Daming Deng, and Huocong Huang have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Deng, D., Huang, H. et al. Overexpression of Six1 leads to retardation of myogenic differentiation in C2C12 myoblasts. Mol Biol Rep 40, 217–223 (2013). https://doi.org/10.1007/s11033-012-2052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2052-7

Keywords

Navigation