Skip to main content
Log in

Identification of single nucleotide polymorphisms in the agouti signaling protein (ASIP) gene in some goat breeds in tropical and temperate climates

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The agouti-signaling protein (ASIP) plays a major role in mammalian pigmentation as an antagonist to melanocortin-1 receptor gene to stimulate pheomelanin synthesis, a major pigment conferring mammalian coat color. We sequenced a 352 bp fragment of ASIP gene spanning part of exon 2 and part of intron 2 in 215 animals representing six goat breeds from Nigeria and the United States: West African Dwarf, predominantly black; Red Sokoto, mostly red; and Sahel, mostly white from Nigeria; black and white Alpine, brown and white Spanish and white Saanen from the US. Twenty haplotypes from nine mutations representing three intronic, one silent and five missense (p.S19R, p.N35K, p.L36V, p.M42L and p.L45W) mutations were identified in Nigerian goats. Approximately 89 % of Nigerian goats carry haplotype 1 (TGCCATCCG) which seems to be the wild type configuration of mutations in this region of the gene. Although we found no association between these polymorphisms in the ASIP gene and coat color in Nigerian goats, in-silico functional analysis predicts putative deleterious functional impact of the p.L45W mutation on the basic amino-terminal domain of ASIP. In the American goats, two intronic mutations, g.293G>A and g.327C>A, were identified in the Alpine breed, although the g.293G>A mutation is common to American and Nigerian goat populations. All Sannen and Sahel goats in this study belong to haplotypes 1 of both populations which seem to be the wild-type composite ASIP haplotype. Overall, there was no clear association of this portion of the ASIP gene interrogated in this study with coat color variation. Therefore, additional genomic analyses of promoter sequence, the entire coding and non-coding regions of the ASIP gene will be required to obtain a definite conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Becerril CM, Wilcox CJ, Lawlor TJ et al (1993) Effects of percentage of white coat color on Holstein’s production and reproduction in a subtropical environment. J Dairy Sci 73:2286–2291

    Article  Google Scholar 

  2. Acharya RM, Gupta UD, Sehgal JP, Singh M (1995) Coat characteristics of goats in relation to heat tolerance in the hot tropics. Small Rumin Res 18:245–248

    Article  Google Scholar 

  3. Singh K, Singh D, Kumar P (1997) Dark coat color in Indian desert goats as an adaptation mechanism to economize feed energy in cool period. Z Ernahrungswiss 36:324

    Article  CAS  Google Scholar 

  4. Norris BJ, Whan VA (2009) A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome Res 18:1282–1293

    Article  Google Scholar 

  5. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

    Article  PubMed  CAS  Google Scholar 

  6. Deng WD, Xi DM, Gou X et al (2009) Pigmentation in black-boned sheep (Ovis aries): association with polymorphism of the tyrosinase gene. Mol Biol Rep 35:379–385

    Article  Google Scholar 

  7. Scott MC, Wakamatsu K, Ito S et al (2002) Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci 115:2349–2355

    PubMed  CAS  Google Scholar 

  8. Robbins LS, Nadeau JH, Johnson KR et al (1993) Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72:827–834

    Article  PubMed  CAS  Google Scholar 

  9. Keifer LL, Ittoop ORR, Bunce K, Truesdale AT, Willard DH, Nichols JS, Blanchard SG, Mountjoy K, Chen W-J, Wilkison WO (1997) Mutations in the carboxyl terminus of the agouti protein decrease agouti inhibition of ligand bind to melanocortin receptors. Biochemistry 36:2084–2090

    Article  Google Scholar 

  10. Bultman SJ, Michaud EJ, Woychik RP (1992) Molecular characterization of the mouse agouti locus. Cell 71(7):1195–1204

    Article  PubMed  CAS  Google Scholar 

  11. Fontanesi L, Beretti F, Riggio V, González EG, Dall’Olio S, Davoli R, Russo V, Portolano B (2009) Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors. Cytogenet Genome Res 126:333–347

    Article  PubMed  CAS  Google Scholar 

  12. Blench R (1999) Traditional livestock breeds: geographical distribution and dynamics in relation to the ecology of West Africa. Working Paper 122. Overseas Development Institute, London

  13. Yakubu A, Salako AE, Imumorin IG (2011) Comparative multivariate analysis of biometric traits of West African Dwarf and Red Sokoto goats. Trop Anim Health Prod 43:561–566

    Article  PubMed  Google Scholar 

  14. Yakubu A, Raji AO, Omeje JN (2010) Genetic and phenotypic differentiation of qualitative traits in Nigerian indigenous goat and sheep populations. ARPN J Agric Biol Sci 5(2):58–66

    Google Scholar 

  15. Wilson RT (1991) Small ruminant production and the small ruminant genetic resource in tropical Africa. FAO Animal Production and Health Paper, 88

  16. Mohammed ID, Amin JD (1996) Estimating body weight from morphometric measurements of Sahel (Borno White) goats. Small Rumin Res 24:1–5

    Article  Google Scholar 

  17. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  18. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  19. Raymond F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  20. Tamura K, Petersen D, Petersen N, Stecher G, Nei M, Kumar S (2011) MEGA 5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  21. Thomas PD, Campbell MJ, Kejariwal A et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141

    Article  PubMed  CAS  Google Scholar 

  22. Brunham LR, Singaraja RR, Pape TD, Kejariwal A, Thomas PD, Hayden MR (2005) Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCAI gene. PLoS Genet 1:e83

    Article  PubMed  Google Scholar 

  23. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  24. Suharyanto, Shiraishi S (2011) Nucleotide diversities and genetic relationship in three Japanese pine species; Pinus thunbergii, Pinus densiflora, and Pinus luchuensis. Diversity 3:121–135

    Article  CAS  Google Scholar 

  25. Strobeck C (1983) Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics 103:545–555

    PubMed  CAS  Google Scholar 

  26. Hudson RR, Kaplan NL (1988) The coalescent process in models with selection and recombination. Genetics 120:831–840

    PubMed  CAS  Google Scholar 

  27. Kaplan NL, Daren T, Hudson RR (1988) The coalescent process in models with selection. Genetics 120:819–829

    PubMed  CAS  Google Scholar 

  28. Miné M, Brivet M, Touati G, Grabowsk P, Abitbol M, Marsac C (2003) Splicing error in E1α pyruvate dehydrogenase mRNA caused by novel intronic mutation responsible for lactic acidosis and mental retardation. J Biol Chem 278(14):11768–11772

    Article  PubMed  Google Scholar 

  29. Holla ØL, Nakken S, Mattingsdal M, Ranheim T, Berge KE, Defesche JC, Leren TP (2009) Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: comparison of wet-lab and bioinformatics analyses. Mol Genet Metab 96(4):245–252

    Article  PubMed  CAS  Google Scholar 

  30. Nascimbeni AC, Fanin M, Tasca E, Angelini (2010) Transcriptional and translational effects of intronic CAPN3 gene mutations. Hum Mutat 31:E1658–E1669

    Article  PubMed  CAS  Google Scholar 

  31. Marklund S, Kijas J, Rodriguez-Martinez H, Rönnstrand L, Funa K, Moller M, Lange D, Edfors-Lilja I, Andersson L (1998) Molecular basis for the dominant white phenotype in the domestic pig. Genome Res 8:826–833

    PubMed  CAS  Google Scholar 

  32. Pielberg G, Olsson C, Syvänen AC, Andersson L (2002) Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig. Genetics 160:305–311

    PubMed  CAS  Google Scholar 

  33. McNulty JC, Jackson PJ, Thompson DA, Chai B, Gantz I, Barsh GS, Dawson PE, Millhauser GL (2005) Structures of the agouti signaling protein. J Mol Biol 346:1059–1070

    Article  PubMed  CAS  Google Scholar 

  34. Jackson PJ, Douglas NR, Chai B, Binkley J, Sidow A, Barsh GS, Millhauser GL (2006) Structural and molecular evolutionary analysis of agouti and agouti-related proteins. Chem Biol 13(12):1297–1305

    Article  PubMed  CAS  Google Scholar 

  35. Schioth HB, Petersson S, Muceniece R, Szardenings M, Wikberg JE (1997) Deletions of the N-terminal regions of the human melanocortin receptors. FEBS Lett 410:223–228

    Article  PubMed  CAS  Google Scholar 

  36. Arnold A, Horst SA, Gardella TJ, Baba H, Levine MA, Kronenberg HM (1990) Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Investig 86(4):1084–1087

    Article  PubMed  CAS  Google Scholar 

  37. Ito M, Oiso Y, Murase T, Kondo K, Saito H, Chinzei T, Racchi M, Lively MO (1993) Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus. J Clin Investig 91(6):2565–2571

    Article  PubMed  CAS  Google Scholar 

  38. Searle AG (1968) Comparative genetics of coat color in mammals. Logos Press, London

    Google Scholar 

  39. Adalsteinsson S, Sponenberg DP, Alexieva S, Russel AJF (1994) Inheritance of goat coat colors. J Hered 85:267–272

    PubMed  CAS  Google Scholar 

  40. Miltenberger RJ, Wakumatsu K, Ito S, Woychik RP, Russell LB, Michaud EJ (2002) Molecular and phenotypic analysis of 25 recessive, homozygous-viable alleles at the mouse agouti locus. Genetics 160:659–674

    PubMed  CAS  Google Scholar 

  41. Kanetsky PA, Swoyer J, Panossian S, Holmes R, Guerry D, Rebbeck TR (2002) A polymorphism in the agouti signaling protein gene is associated with human pigmentation. Am J Hum Genet 70:770–775

    Article  PubMed  CAS  Google Scholar 

  42. Girardot M, Guibert S, Laforet MP, Gallard Y, Larroque H, Oulmouden A (2006) The insertion of a full-length Bos taurus LINE element is responsible for a transcriptional deregulation of the Normanne Agouti gene. Pigment Cell Res 19:346–355

    Article  PubMed  CAS  Google Scholar 

  43. Kuramoto T, Nomato T, Sugimura T, Ushijima T (2001) Cloning of the rat agouti gene and identification of the rat nonagouti mutation. Mamm Genome 12:469–471

    Article  PubMed  CAS  Google Scholar 

  44. Rieder S, Taourit S, Mariat D, Langlois B, Guérin G (2001) Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mamm Genome 12(6):450–455

    Article  PubMed  CAS  Google Scholar 

  45. Royo LJ, Álvarez I, Arranz JJ, Fernández I, Rodríguez A et al (2008) Differences in the expression of the ASIP gene are involved in the recessive black coat color pattern in sheep: evidence from the rare Xalda sheep breed. Anim Genet 39:290–293

    Article  PubMed  CAS  Google Scholar 

  46. Fontanesi L, Beretti F, Riggio V, Dall’Olio S, González EG, Finocchiaro R, Davoli R, Russo V, Portolano B (2009) Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat color phenotypes but with unexpected evidences. BMC Genet 10:47

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from College of Agriculture and Life Sciences, Cornell University is gratefully acknowledged. Special thanks to Dr. W. Ron Butler, the Department of Animal Science and College of Agriculture and Life Sciences at Cornell University for the opportunity given to M.A.A. and B.O.A. as visiting research students at Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhide G. Imumorin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adefenwa, M.A., Peters, S.O., Agaviezor, B.O. et al. Identification of single nucleotide polymorphisms in the agouti signaling protein (ASIP) gene in some goat breeds in tropical and temperate climates. Mol Biol Rep 40, 4447–4457 (2013). https://doi.org/10.1007/s11033-013-2535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2535-1

Keywords

Navigation