Skip to main content
Log in

Investigation of four candidate genes (IGF2, JHDM1A, COPB1 and TEF1) for growth rate and backfat thickness traits on SSC2q in Large White pigs

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As important quantitative traits, the growth rate and backfat thickness are controlled by multiple genes. The aim of this investigation was to evaluate the effect of the single and multiple SNPs of four candidate genes (IGF2, JHDM1A, COPB1 and TEF-1) on growth rate and backfat thickness. The four candidate genes were mapped on the p arm of SSC 2, and there are several QTLs, such as average daily gain, backfat thickness, an imprinted QTLs affecting muscle mass and fat deposition have been reported in this region. The polymorphisms of these genes were detected using PCR–RFLP methods, mixed procedure was used to analyze the single marker association with the growth and backfat thickness traits, and the gene–gene combination was investigated using multiple-markers analysis. The single marker association analysis indicated that the IGF2 intron-3 g.3072G > A and the substitution g.93G > A of TEF-1 gene were significantly associated with the age at 100 kg (P < 0.05). The JHDM1A 3′UTR g.224C > G, the c.3096C > T polymorphism of COPB1 gene and the substitution g.93G > A of TEF-1 gene were all significantly associated with the backfat at the shoulder (P < 0.05), backfat at the last rib, backfat at the lumbar, and the average backfat thickness, respectively. The multiple-markers analysis indicated that IGF2 and TEF-1 integrated gene networks for the age at 100 kg. Therefore, we can suggest that the polymorphism of IGF2 and TEF-1 gene could be used in marker-assisted selection for the age at 100 kg in Large White pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  PubMed  Google Scholar 

  2. Rattink AP, De Koning DJ, Faivre M, Harlizius B, van Arendonk JA, Groenen MA (2000) Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm Genome 11:656–661

    Article  CAS  PubMed  Google Scholar 

  3. Vykoukalova Z, Knoll A, Dvorak J, Cepica S (2006) New SNPs in the IGF2 gene and association between this gene and backfat thickness and lean meat content in Large White pigs. J Anim Breed Genet 123:204–207

    Article  CAS  PubMed  Google Scholar 

  4. Yang GC, Ren J, Guo YM, Ding NS, Chen CY, Huang LS (2006) Genetic evidence for the origin of an IGF2 quantitative trait nucleotide in Chinese pigs. Anim Genet 37:179–180

    Article  CAS  PubMed  Google Scholar 

  5. Gardan D, Gondret F, Van den Maagdenberg K, Buys N, De Smet S, Louveau I (2008) Lipid metabolism and cellular features of skeletal muscle and subcutaneous adipose tissue in pigs differing in IGF-II genotype. Domest Anim Endocrinol 34:45–53

    Article  CAS  PubMed  Google Scholar 

  6. Hou G, Wang D, Guan S, Zeng H, Huang X, Ma Y (2010) Associated analysis of single nucleotide polymorphisms of IGF2 gene’s exon 8 with growth traits in Wuzhishan pig. Mol Biol Rep 37(1):497–500

    Article  CAS  PubMed  Google Scholar 

  7. Aslan O, Hamill RM, Davey G, McBryan J, Mullen AM, Gispert M, Sweeney T (2012) Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle. Mol Biol Rep 39(4):4101–4110

    Article  CAS  PubMed  Google Scholar 

  8. Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86:263–274

    Article  CAS  PubMed  Google Scholar 

  9. Lee H, Habas R, Abate-Shen C (2004) MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304:1675–1678

    Article  CAS  PubMed  Google Scholar 

  10. Peng YB, Fan B, Han XL, Xu XW, Rothschild MF, Yerle M, Liu B (2011) Molecular characterization of the porcine JHDM1A gene associated with average daily gain: evaluation its role in skeletal muscle development and growth. Mol Biol Rep 38(7):4697–4704

    Article  CAS  PubMed  Google Scholar 

  11. Stewart AF, Larkin SB, Farrance IK, Mar JH, Hall DE, Ordahl CP (1994) Muscle-enriched TEF-1 isoforms bind M-CAT elements from muscle-specific promoters and differentially activate transcription. J Biol Chem 269:3147–3150

    CAS  PubMed  Google Scholar 

  12. Hsu DK, Guo Y, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA, Peifley KA, Winkles JA (1996) Identification of a murine TEF-1-related gene expressed after mitogenic stimulation of quiescent fibroblasts and during myogenic differentiation. J Biol Chem 271:13786–13795

    Article  CAS  PubMed  Google Scholar 

  13. Maeda T, Gupta MP, Stewart AF (2002) TEF-1 and MEF2 transcription factors interact to regulate muscle-specific promoters. Biochem Biophys Res Commun 294:791–797

    Article  CAS  PubMed  Google Scholar 

  14. Xu X, Xing S, Du ZQ, Rothschild MF, Yerle M, Liu B (2008) Porcine TEF1 and RTEF1: molecular characterization and association analyses with growth traits. Comp Biochem Physiol B 150:447–453

    Article  PubMed  Google Scholar 

  15. Nickel W, Brugger B, Wieland FT (2002) Vesicular transport: the core machinery of COPI recruitment and budding. J Cell Sci 115:3235–3240

    CAS  PubMed  Google Scholar 

  16. Li W, Elliott RW, Novak EK, Swank RT (1999) cDNA sequence and mapping of the mouse Copb gene encoding the beta subunit of the COPI coatomer complex. Somat Cell Mol Genet 25:177–183

    Article  PubMed  Google Scholar 

  17. Qiu H, Xu X, Fan B, Rothschild MF, Martin Y, Liu B (2010) Investigation of LDHA and COPB1 as candidate genes for muscle development in the MYOD1 region of pig chromosome 2. Mol Biol Rep 37(1):629–636

    Article  CAS  PubMed  Google Scholar 

  18. Carr CC, Morgan JB, Berg EP, Carter SD, Ray FK (2006) Growth performance, carcass composition, quality, and enhancement treatment of fresh pork identified through deoxyribonucleic acid marker-assisted selection for the Rendement Napole gene. J Anim Sci 84:910–917

    CAS  PubMed  Google Scholar 

  19. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O’Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451

    Article  CAS  PubMed  Google Scholar 

  20. Gerbens F, Verburg FJ, Van Moerkerk HT, Engel B, Buist W, Veerkamp JH, te Pas MF (2001) Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J Anim Sci 79:347–354

    CAS  PubMed  Google Scholar 

  21. Stinckens A, Luyten T, Bijttebier J, Van den Maagdenberg K, Dieltiens D, Janssens S, De Smet S, Georges M, Buys N (2008) Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim Genet 39:586–596

    Article  CAS  PubMed  Google Scholar 

  22. Milan D, Bidanel JP, Iannuccelli N, Riquet J, Amigues Y, Gruand J, Le Roy P, Renard C, Chevalet C (2002) Detection of quantitative trait loci for carcass composition traits in pigs. Genet Sel Evol 34:705–728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158

    Article  CAS  PubMed  Google Scholar 

  24. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156

    Article  CAS  PubMed  Google Scholar 

  25. Evans GJ, Giuffra E, Sanchez A, Kerje S, Davalos G, Vidal O, Illan S, Noguera JL, Varona L, Velander I, Southwood OI, de Koning DJ, Haley CS, Plastow GS, Andersson L (2003) Identification of quantitative trait loci for production traits in commercial pig populations. Genetics 164:621–627

    CAS  PubMed  Google Scholar 

  26. Jungerius BJ, van Laere AS, Te Pas MF, van Oost BA, Andersson L, Groenen MA (2004) The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan x European white pig intercross. Genet Res 84:95–101

    Article  CAS  PubMed  Google Scholar 

  27. Thomsen H, Lee HK, Rothschild MF, Malek M, Dekkers JC (2004) Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. J Anim Sci 82:2213–2228

    CAS  PubMed  Google Scholar 

  28. Vidal O, Noguera JL, Amills M, Varona L, Gil M, Jimenez N, Davalos G, Folch JM, Sanchez A (2005) Identification of carcass and meat quality quantitative trait loci in a Landrace pig population selected for growth and leanness. J Anim Sci 83:293–300

    CAS  PubMed  Google Scholar 

  29. Sanchez MP, Riquet J, Iannuccelli N, Gogue J, Billon Y, Demeure O, Caritez JC, Burgaud G, Feve K, Bonnet M, Pery C, Lagant H, Le Roy P, Bidanel JP, Milan D (2006) Effects of quantitative trait loci on chromosomes 1, 2, 4, and 7 on growth, carcass, and meat quality traits in backcross Meishan x Large White pigs. J Anim Sci 84:526–537

    CAS  PubMed  Google Scholar 

  30. Liu G, Jennen DG, Tholen E, Juengst H, Kleinwachter T, Holker M, Tesfaye D, Un G, Schreinemachers HJ, Murani E, Ponsuksili S, Kim JJ, Schellander K, Wimmers K (2007) A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim Genet 38:241–252

    Article  CAS  PubMed  Google Scholar 

  31. Liu G, Kim JJ, Jonas E, Wimmers K, Ponsuksili S, Murani E, Phatsara C, Tholen E, Juengst H, Tesfaye D, Chen JL, Schellander K (2008) Combined line-cross and half-sib QTL analysis in Duroc-Pietrain population. Mamm Genome 19:429–438

    Article  PubMed  Google Scholar 

  32. Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774

    Article  CAS  PubMed  Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, New York

    Google Scholar 

  34. Jiang Z, Michal JJ, Chen J, Daniels TF, Kunej T, Garcia MD, Gaskins CT, Busboom JR, Alexander LJ, Wright RW Jr, Macneil MD (2009) Discovery of novel genetic networks associated with 19 economically important traits in beef cattle. Int J Biol Sci 5:528–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fontanesi L, Speroni C, Buttazzoni L, Scotti E, Dall’Olio S, Nanni Costa L, Davoli R, Russo V (2010) The insulin-like growth factor 2 (IGF2) gene intron3-g.3072G > A polymorphism is not the only Sus scrofa chromosome 2p mutation affecting meat production and carcass traits in pigs: evidence from the effects of a cathepsin D (CTSD) gene polymorphism. J Anim Sci 88:2235–2245

    Article  CAS  PubMed  Google Scholar 

  36. Ojeda A, Huang LS, Ren J, Angiolillo A, Cho IC, Soto H, Lemus-Flores C, Makuza SM, Folch JM, Perez-Enciso M (2008) Selection in the making: a worldwide survey of haplotypic diversity around a causative mutation in porcine IGF2. Genetics 178:1639–1652

    Article  CAS  PubMed  Google Scholar 

  37. Van den Maagdenberg K, Claeys E, Stinckens A, Buys N, De Smet S (2007) Effect of age, muscle type, and insulin-like growth factor-II genotype on muscle proteolytic and lipolytic enzyme activities in boars. J Anim Sci 85:952–960

    Article  PubMed  Google Scholar 

  38. Oczkowicz M, Tyra M, Walinowicz K, Rozycki M, Rejduch B (2009) Known mutation (A3072G) in intron 3 of the IGF2 gene is associated with growth and carcass composition in Polish pig breeds. J Appl Genet 50:257–259

    Article  CAS  PubMed  Google Scholar 

  39. Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  CAS  PubMed  Google Scholar 

  40. Peng YB, Yerle M, Liu B (2009) Mapping and expression analyses during porcine foetal muscle development of 12 genes involved in histone modifications. Anim Genet 40:242–246

    Article  CAS  PubMed  Google Scholar 

  41. McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Malek M, Dekkers JC, Lee HK, Baas TJ, Rothschild MF (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm Genome 12:630–636

    Article  CAS  PubMed  Google Scholar 

  43. Kim JJ, Rothschild MF, Beever J, Rodriguez-Zas S, Dekkers JC (2005) Joint analysis of two breed cross populations in pigs to improve detection and characterization of quantitative trait loci. J Anim Sci 83:1229–1240

    CAS  PubMed  Google Scholar 

  44. Qu YC, Deng CY, Xiong YZ, Zheng R, Yu L, Su YH, Liu GL (2002) The construction of the genetic map and QTL locating analysis on chromosome 2 in swine. Yi Chuan Xue Bao 29:972–976

    PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National High Science and Technology Foundation of China (2011AA100304) and Science and Technology Foundation of Wuhan (201220822259-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Yang, H., Jiang, T. et al. Investigation of four candidate genes (IGF2, JHDM1A, COPB1 and TEF1) for growth rate and backfat thickness traits on SSC2q in Large White pigs. Mol Biol Rep 41, 309–315 (2014). https://doi.org/10.1007/s11033-013-2863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2863-1

Keywords

Navigation