Skip to main content
Log in

Autophagy inhibition impairs the invasion potential of medulloblastoma cells

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Medulloblastoma, a highly malignant pediatric brain tumor, consists of four distinct molecular subgroups called WNT, SHH, Group 3, and Group 4 that differ in their clinical characteristics with the WNT subgroup having excellent survival rate. About 1/3rd medulloblastomas have metastasis at the time of diagnosis suggesting, high invasion potential of these tumors. We have earlier reported that the tumor-suppressive role of miR-204 and miR-30a is accompanied by inhibition of autophagy in medulloblastoma cells. In the present study, we have investigated the role of autophagy in medulloblastoma biology. Autophagy was inhibited in the medulloblastoma cell lines belonging to the SHH, Group 3, and Group 4 using the shRNA mediated knockdown of ATG5, an upstream regulator of autophagy. The effect of autophagy inhibition was studied on the growth and malignant behavior of medulloblastoma cells. ATG5 knockdown resulted in the autophagy inhibition in medulloblastoma cells as judged by the reduction in the flux of LC3B, a marker for autophagy. Autophagy inhibition did not result in a significant difference in the proliferation and anchorage-independent growth of the medulloblastoma cells. On the other hand, autophagy inhibition brought about a substantial reduction in the invasion potential of all three medulloblastoma cell lines studied. The present study suggests a therapeutic potential for autophagy inhibitors in the treatment of medulloblastoma. Autophagy inhibitors could be effective in reducing the dose of craniospinal radiation, thereby leading to a significant reduction in the treatment-related side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

Raw data will be provided upon reasonable request.

Abbreviations

D-MEM:

Dulbecco’s modified eagle medium

FBS:

Fetal bovine serum

ECM:

Extracellular matrix

EMT:

Epithelial mesenchyma transition

shRNA:

Short hairpin RNA

References

  1. Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A (2008) Medulloblastoma: from molecular pathology to therapy. Clin Cancer Res 14(4):971–976. https://doi.org/10.1158/1078-0432.CCR-07-2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor MD, Northcott PA, Korshunov A et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  3. Gokhale A, Kunder R, Goel A et al (2010) Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. J Cancer Res Ther 6(4):521–529. https://doi.org/10.4103/0973-1482.77072

    Article  CAS  PubMed  Google Scholar 

  4. Kunder R, Jalali R, Sridhar E et al (2013) Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-oncology 15(12):1644–1651. https://doi.org/10.1093/neuonc/not123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Volinia S, Galasso M, Costinean S et al (2010) Reprogramming of miRNA networks in cancer and leukemia. Genome Res 20(5):589–599. https://doi.org/10.1101/gr.098046.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bharambe HS, Paul R, Panwalkar P et al (2019) Downregulation of miR-204 expression defines a highly aggressive subset of Group 3/Group 4 medulloblastomas. Acta Neuropathol Commun 7(1):52. https://doi.org/10.1186/s40478-019-0697-3

    Article  PubMed  PubMed Central  Google Scholar 

  7. Singh SV, Dakhole AN, Deogharkar A et al (2017) Restoration of miR-30a expression inhibits growth, tumorigenicity of medulloblastoma cells accompanied by autophagy inhibition. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2017.07.140

    Article  PubMed  PubMed Central  Google Scholar 

  8. Milde T, Lodrini M, Savelyeva L et al (2012) HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment. J Neurooncol 110(3):335–348. https://doi.org/10.1007/s11060-012-0978-1

    Article  CAS  PubMed  Google Scholar 

  9. Crighton D, Wilkinson S, O'Prey J et al (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126(1):121–134. https://doi.org/10.1016/j.cell.2006.05.034

    Article  CAS  PubMed  Google Scholar 

  10. Wiederschain D, Wee S, Chen L et al (2009) Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8(3):498–504. https://doi.org/10.4161/cc.8.3.7701

    Article  CAS  PubMed  Google Scholar 

  11. Ivanov DP, Coyle B, Walker DA, Grabowska AM (2016) In vitro models of medulloblastoma: choosing the right tool for the job. J Biotechnol 236:10–25. https://doi.org/10.1016/j.jbiotec.2016.07.028

    Article  CAS  PubMed  Google Scholar 

  12. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci. https://doi.org/10.3390/ijms18091865

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang ZJ, Chee CE, Huang S, Sinicrope FA (2011) The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 10(9):1533–1541. https://doi.org/10.1158/1535-7163.MCT-11-0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Investig 112(12):1809–1820. https://doi.org/10.1172/JCI20039

    Article  CAS  PubMed  Google Scholar 

  16. Takamura A, Komatsu M, Hara T et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25(8):795–800. https://doi.org/10.1101/gad.2016211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rao S, Tortola L, Perlot T et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5:3056. https://doi.org/10.1038/ncomms4056

    Article  CAS  PubMed  Google Scholar 

  18. Strohecker AM, White E (2014) Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 10(2):384–385. https://doi.org/10.4161/auto.27320

    Article  CAS  PubMed  Google Scholar 

  19. Sharifi MN, Mowers EE, Drake LE et al (2016) Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep 15(8):1660–1672. https://doi.org/10.1016/j.celrep.2016.04.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kenific CM, Stehbens SJ, Goldsmith J et al (2016) NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol 212(5):577–590. https://doi.org/10.1083/jcb.201503075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim YH, Baek SH, Kim EK et al (2016) Uncoordinated 51-like kinase 2 signaling pathway regulates epithelial-mesenchymal transition in A549 lung cancer cells. FEBS Lett 590(9):1365–1374. https://doi.org/10.1002/1873-3468.12172

    Article  CAS  PubMed  Google Scholar 

  22. Lock R, Kenific CM, Leidal AM, Salas E, Debnath J (2014) Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov 4(4):466–479. https://doi.org/10.1158/2159-8290.CD-13-0841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rubinstein AD, Kimchi A (2012) Life in the balance—a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 125(Pt 22):5259–5268. https://doi.org/10.1242/jcs.115865

    Article  CAS  PubMed  Google Scholar 

  24. Amaravadi RK, Kimmelman AC, Debnath J (2019) Targeting autophagy in cancer: recent advances and future directions. Cancer Discov 9(9):1167–1181. https://doi.org/10.1158/2159-8290.CD-19-0292

    Article  PubMed  PubMed Central  Google Scholar 

  25. Servante J, Estranero J, Meijer L, Layfield R, Grundy R (2018) Chemical modulation of autophagy as an adjunct to chemotherapy in childhood and adolescent brain tumors. Oncotarget 9(81):35266–35277

    Article  Google Scholar 

Download references

Acknowledgements

We highly appreciate Mr. Anant Sawant for technical assistance.

Funding

The study is supported by the intramural institutional grants.

Author information

Authors and Affiliations

Authors

Contributions

RP and HB designed and performed all the experimental procedures and analyzed the data. The study was conceptualized, designed, and the manuscript written by NVS that was approved by all the authors.

Corresponding author

Correspondence to Neelam Vishwanath Shirsat.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interests.

Informed consent

All authors have read and approved the full manuscript and have given the consent for publishing it in the Journal ‘Molecular Biology Reports’.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, R., Bharambe, H. & Shirsat, N.V. Autophagy inhibition impairs the invasion potential of medulloblastoma cells. Mol Biol Rep 47, 5673–5680 (2020). https://doi.org/10.1007/s11033-020-05603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05603-3

Keywords

Navigation