Skip to main content

Advertisement

Log in

Assessment of YKL-40, lipid profile, antioxidant status, and some trace elements in benign and malignant breast proliferation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is mainly the common form of cancer in women and is a leading cause of death worldwide associated with cancer. The objective of this study was to assess the possible association of lipid profiles (total cholesterol TC, low-density lipoprotein LDL, very-low-density lipoprotein VLDL, high-density lipoprotein HDL, non-HDL and triglyceride TG), Chitinase-3-Like Protein1 (YKL-40) and changes in the levels of certain trace elements (Cu, Mg, Fe, and Zn), antioxidant status (TAC) and nitric oxide (NO) in benign and breast cancer in Egyptian females population. For 56 females with a benign breast tumor, 58 females with breast cancer, besides 52 healthy controls, Serum lipid profile, YKL-40, TAC, NO, Cu, Fe, Zn, and Mg have been determined. Our results showed a significant difference in lipid profile and a significant increase in, YKL-40, NO, and iron in breast benign tumor and cancer patients compared to control one. Besides, there is a significant reduction in serum magnesium and TAC levels in the patients’ group compared to the healthy group. There is also a significant correlation between serum YKL-40 level and TC, LDL-C, VLDL-C, non-HDL-C, and TG in the breast cancer group; although only YKL-40 and VLDL-C showed a significant positive correlation in benign tumor patients. It is recommended that non-HDL-cholesterol, TAC, and Mg be used as biomarkers for breast cancer and its progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Santen RJ, Mansel R (2005) Benign breast disorders. N Engl J Med 353:275–785

    CAS  PubMed  Google Scholar 

  2. Wirfalt E, Mattisson I et al (2003) Post-menopausal breast cancer is associated with high intakes of ω-6 fatty acids (Sweden). Cancer Causes Control 13:883–893

    Google Scholar 

  3. Guray M, Sahin AA (2006) Benign breast diseases: classification, diagnosis, and management. Oncologist 11:435–449

    PubMed  Google Scholar 

  4. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Akinyemiju TF et al (2018) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the Global Burden of Disease Study. JAMA Oncol 4:1553–1568

    Google Scholar 

  5. Torre LA, Bray F et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    PubMed  Google Scholar 

  6. Lane DM, Boatman KK, McConathy WJ (1995) Serum lipids and apolipoproteins in women with breast masses. Breast Cancer Res Treat 34:161–169

    CAS  PubMed  Google Scholar 

  7. Rodrigues DSC, Fonseca I et al (2014) Plasma level of LDLcholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer 14:132

    Google Scholar 

  8. Nowak C, Ärnlöv JA (2018) Mendelian randomization study of the effects of blood lipids on breast cancer risk. Nat Commun 9:3957

    PubMed  PubMed Central  Google Scholar 

  9. Furberg AS, Veierod MB et al (2004) Serum high density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J Natl Cancer Inst 96(15):1152–1160

    CAS  PubMed  Google Scholar 

  10. Li X, Tang H et al (2017) The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer. Breast 32:1–6

    CAS  PubMed  Google Scholar 

  11. Cedó L, Reddy ST et al (2019) HDL and LDL: potential new players in breast cancer development. J Clin Med 8(6):853

    PubMed Central  Google Scholar 

  12. Collaboration ERF, Di Angelantonio E, Sarwar N et al (2009) Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302:1993–2000

    Google Scholar 

  13. Brunner FJ, Waldeyer C et al (2019) Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium. Lancet 394:2173–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Balaban S, Lee LS et al (2015) Obesity and cancer progression: is there a role of fatty acid metabolism? Biomed Res Int 2015:274585

    PubMed  PubMed Central  Google Scholar 

  15. Saavedra-Garcia P, Nichols K et al (2018) Unravelling therole of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis. Mol Cell Endocrinol 462(Pt B):82–92

    CAS  PubMed  Google Scholar 

  16. Lofterød T, Mortensen ES et al (2018) Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. BMC Cancer 18:654

    PubMed  PubMed Central  Google Scholar 

  17. Schultz NA, Johansen JS (2010) YKL-40- A Protein in the field of translational medicine: a role as a biomarker in cancer patients. Cancers 2:1453–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA (2006) Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol Biomark Prev 15:194–202

    CAS  Google Scholar 

  19. Bian B, Li L et al (2019) Prognostic value of YKL-40 in solid tumors: a meta-analysis of 41 cohort studies. Cancer Cell Int 19:259

    PubMed  PubMed Central  Google Scholar 

  20. Shao R, Cao QJ et al (2011) Breast cancer expression of YKL-40 correlates with tumor grade, poor differentiation, and other cancer markers. Br J Cancer 105(8):1203–1209

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olfat GS, Yasser HN et al (2014) Chitinase-3-like protein1 (YKL-40) as biomarker in serum of Egyptian breast cancer females. Biochem Anal Biochem 3:149

    Google Scholar 

  22. Reuter S, Gupta SC et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee JD, Cai Q et al (2017) The role of biomarkers of oxidative stress in breast cancer risk and prognosis: a systematic review of the epidemiologic literature. J Womens Health (Larchmt) 26(5):467–482

    Google Scholar 

  24. Hewala TI, Abo Elsoud MR (2019) The clinical significance of serum oxidative stress biomarkers in breast cancer females. Med Res J 4(1):1–7

    Google Scholar 

  25. Sener DE, Gönenç A et al (2007) Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochem Funct 25:377–382

    CAS  PubMed  Google Scholar 

  26. Abdel-Salam OME, Youness ER et al (2011) The antioxidant status of the plasma in patients with breast cancer undergoing chemotherapy. Open J Mol Integr Physiol 1:29–35

    CAS  Google Scholar 

  27. Thomsen LL, Miles DW et al (1995) Nitric oxide synthase activity in human breast cancer. Br J Cancer 72:41–44

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumor progression. Lancet Oncol 2:149–156

    CAS  PubMed  Google Scholar 

  29. Choudhari SK, Chaudhary M et al (2013) Nitric oxide and cancer: a review. World J Surg Oncol 11:118

    PubMed  Google Scholar 

  30. Taha MM, Mohamed AS et al (2014) Estrogen receptor gene-α polymorphism in relation to lipid profile and Cu, Zn levels in breast cancer patients. Int Public Health Forum 1(4):7–14

    Google Scholar 

  31. Al-Fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5(3):127–136

    CAS  Google Scholar 

  32. Fukuda H, Ebara M et al (2004) Trace elements and cancer. JMAJ 47(8):391–395

    Google Scholar 

  33. Xu J, Wise JTF et al (2017) Dual roles of oxidative stress in metal carcinogenesis. J Environ Pathol Toxicol Oncol 36(4):345–376

    PubMed  PubMed Central  Google Scholar 

  34. Fanzani A, Poli M (2017) Iron, oxidative damage and ferroptosis in rhabdomyosarcoma. Int J Mol Sci 18(8):1718

    PubMed Central  Google Scholar 

  35. Gupte A, Mumper RJ (2009) Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev 35:32–46

    CAS  PubMed  Google Scholar 

  36. Hasebe N (2005) Oxidative stress and magnesium. Clin Calcium 15(2):194–202

    CAS  PubMed  Google Scholar 

  37. Zheltova AA, Kharitonova MV et al (2016) Magnesium deficiency and oxidative stress: an update. Biomedicine (Taipei) 6(4):20

    Google Scholar 

  38. Wolf FI, Trapani V et al (2009) Magnesium deficiency affects mammary epithelial cell proliferation: involvement of oxidative stress. Nutr Cancer 61(1):131–136

    CAS  PubMed  Google Scholar 

  39. Wolf FI, Maier JA, Nasulewicz A et al (2007) Magnesium and neoplasia: from carcinogenesis to tumor growth and progression or treatment. Arch Biochem Biophys 458:24–32

    CAS  PubMed  Google Scholar 

  40. Franklin RB, Costello LC (2009) The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem 106(5):750–757

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fassati P, Prencipe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28(10):2077–2080

    Google Scholar 

  42. Richmond W (1973) Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin Chem 19(12):1350–1356

    CAS  PubMed  Google Scholar 

  43. Lopes-Virella MF, Stone P et al (1977) Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 23(5):882–884

    CAS  PubMed  Google Scholar 

  44. Wieland H, Seidel D (1983) A simple specific method for precipitation of low density lipoproteins. J Lipid Res 24(7):904–909

    CAS  PubMed  Google Scholar 

  45. Warnick GR, Knopp RH et al (1990) Estimation of low density lipoprotein cholesterol by the Friedewald equation is adequate for classifying patients on the basis of nationality recommended cut points. Clin Chem 36(1):15–19

    CAS  PubMed  Google Scholar 

  46. Montogomery HAC, Dymock JF (1961) Colorimetric determination of nitric oxide. Analyst 86:414–416

    Google Scholar 

  47. Koracevic D, Koracevic G et al (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54:356–361

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Artiss JD, Vinogradov S, Zak B (1981) Spectrophotometric study of several sensitive reagents for serum iron. Clin Biochem 14(6):311–315

    CAS  PubMed  Google Scholar 

  49. Abe A, Yamashita S, Noma A (1989) Sensitive, direct colorimetric assay for copper in serum. Clin Chem 35(4):552–554

    CAS  PubMed  Google Scholar 

  50. Johnsen R, Eliasson R (1987) Evaluation of commercially available kit for the colorimetric determination of zinc. Int J Androl 10(2):435–440

    CAS  PubMed  Google Scholar 

  51. Grindler EM, Heth DA (1971) Colorimetric determination with bound calmagite of magnesium in human blood serum. Clin Chem 17:662

    Google Scholar 

  52. Ferlay J, Colombet M et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    CAS  PubMed  Google Scholar 

  53. Ray G, Husain SA (2001) Role of lipids, lipoproteins and vitamins in women with breast cancer. Clin Biochem 34(1):71–76

    CAS  PubMed  Google Scholar 

  54. Ni H, Liu H, Gao R (2015) Serum lipids and breast cancer risk: a meta-analysis of prospective cohort studies. PLoS One 10:e0142669

    PubMed  PubMed Central  Google Scholar 

  55. Prabakar MS, Prakasam N et al (2019) clinical study of serum lipid profile in benign breast disease in a tertiary care hospital. Int Surg J 6(9):3162–3164

    Google Scholar 

  56. Touvier M, Fassier P et al (2015) Cholesterol and breast cancer risk: a systematic review and meta-analysis of prospective studies. Br J Nutr 114:347–357

    CAS  PubMed  Google Scholar 

  57. Borgquist S, Butt T et al (2016) Apolipoproteins, lipids and risk of cancer. Int J Cancer 138:2648–2656

    CAS  PubMed  Google Scholar 

  58. Kabat GC, Kim M et al (2009) A longitudinal study of the metabolic syndrome and risk of postmenopausal breast cancer. Cancer Epidemiol Biomark Prev 18(7):2046–2053

    CAS  Google Scholar 

  59. Melvin JC, Seth D et al (2012) Lipid profiles and risk of breast and ovarian cancer in the Swedish AMORIS Study. Cancer Epidemiol Biomark Prev 21(8):1381–1384

    CAS  Google Scholar 

  60. Kucharska-Newton AM, Rosamond WD et al (2008) HDL-cholesterol and incidence of breast cancer in the ARIC cohort study. Ann Epidemiol 18(9):671–677

    PubMed  PubMed Central  Google Scholar 

  61. Agnoli C, Berrino F et al (2010) Metabolic syndrome and postmenopausal breast cancer in the ORDET cohort: a nested case–control study. Nutr Metab Cardiovasc Dis 20:41–48

    CAS  PubMed  Google Scholar 

  62. Martin LJ, Melnichouk O et al (2015) Serum lipids, lipoproteins, and risk of breast cancer: a nested case–control study using multiple time points. J Natl Cancer Inst 107(5):djv032. https://doi.org/10.1093/jnci/djv032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Knapp ML, al-Sheibani S, Riches PG (1991) Alterations of serum lipids in breast cancer: effects of disease activity, treatment, and hormonal factors. Clin Chem 37:2093–2101

    CAS  PubMed  Google Scholar 

  64. Johansen JS, Christensen IJ et al (2003) High serum YKL-40 levels in patients with primary breast cancer is related to short recurrence free survival. Breast Cancer Res Treat 80:15–21

    CAS  PubMed  Google Scholar 

  65. Uzunova V, Paskalev G et al (2010) YKL-40—a new diagnostic biomarker for benign breast diseases and breast cancer. J IMAB 16:8–10

    Google Scholar 

  66. Shao R (2013) YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol 4:122. https://doi.org/10.3389/fphys.2013.00122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Thomsen SB, Rathcke CN et al (2012) The association between genetic variations of CHI3L1, levels of the encoded glycoprotein YKL-40 and the lipid profile in a Danish population. PLoS One 7(10):e47094. https://doi.org/10.1371/journal.pone.0047094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rathcke CN, Vestergaard H (2006) YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res 55:221–227

    CAS  PubMed  Google Scholar 

  69. Michelsen AE, Rathcke CN et al (2010) Increased YKL-40 expression in patients with carotid atherosclerosis. Atherosclerosis 211:589–595

    CAS  PubMed  Google Scholar 

  70. Ebrahim A, Mustafa AI et al (2020) Serum YKL40: a novel potential link between inflammation and dyslipidemia in acne vulgaris. J Cosmet Dermatol 19(5):1219–1223

    PubMed  Google Scholar 

  71. Di Giacomo C, Acquaviva R et al (2003) Nonproteic antioxidant status in plasma of subjects with colon cancer. Exp Biol Med (Maywood) 228:525–528

    Google Scholar 

  72. Zabłocka-Słowińska K, Porębska I et al (2016) Total antioxidant status in lung cancer is associated with levels of endogenous antioxidants and disease stage rather than lifestyle factors—preliminary study. Contemp Oncol (Pozn) 20(4):302–307

    Google Scholar 

  73. Yeon JY, Suh YJ et al (2011) Evaluation of dietary factors in relation to the biomarkers of oxidative stress and inflammation in breast cancer risk. Nutr 27:912–918

    CAS  Google Scholar 

  74. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    CAS  PubMed  Google Scholar 

  75. Rashad YA, Elkhodary TR et al (2013) Evaluation of serum levels of HER2, MMP-9, nitric oxide, and total antioxidant capacity in Egyptian breast cancer patients: correlation with clinico-pathological parameters. Sci Pharm 82:129–145

    PubMed  PubMed Central  Google Scholar 

  76. El-Deeb MMK, El-Sheredy HG, Mohammed AF (2019) The possible role of interleukin (IL)-18 and nitrous oxide and their relation to oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev 20(9):2659–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lechner M, Lirk P, Rieder J (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol 15:277–289

    CAS  PubMed  Google Scholar 

  78. Holotiuk VV, Kryzhanivska AY et al (2019) Role of nitric oxide in pathogenesis of tumor growth and its possible application in cancer treatment. Exp Oncol 41(3):210–215

    CAS  PubMed  Google Scholar 

  79. Ahmadi N, Mahjoub S et al (2018) Alterations in serum levels of trace element in patients with breast cancer before and after chemotherapy. Casp J Intern Med 9(2):134–139

    Google Scholar 

  80. da Silva MP, Zucchi OL (2009) Discriminant analysis of trace elements in normal, benign and malignant breast tissues measured by total reflection X-ray fluorescence. Spectrochim Acta Part B 64:587–592

    Google Scholar 

  81. Silva MP, Soave DF et al (2012) Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive x-ray fluorescence. BMC Res Notes 5:194. https://doi.org/10.1186/1756-0500-5-194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaczmarek K, Jakubowska A et al (2012) Zinc and breast cancer risk. Hered Cancer Clin Pract 10(Suppl 4):A6. https://doi.org/10.1186/1897-4287-10-S4-A6

    Article  PubMed Central  Google Scholar 

  83. Leonard SS, Bower JJ, Shi X (2004) Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol Cell Biochem 255(1–2):3–10

    CAS  PubMed  Google Scholar 

  84. Castiglioni S, Maier JA (2011) Magnesium and cancer: a dangerous liason. Magnes Res 24:S92–100

    CAS  PubMed  Google Scholar 

  85. Blaszczyk U, Duda-Chodak A (2013) Magnesium: its role in nutrition and carcinogenesis. Rocz Państw Zakł Hig 64(3):165–171

    CAS  PubMed  Google Scholar 

  86. Atoe K, Idemudia JO, Eboreime O (2014) Serum magnesium levels in women with breast cancer in Benin City, Nigeria. Int J Trop Dis Health 4(6):723–728

    Google Scholar 

  87. Aleksandrowicz J, Blicharski J, Dzigowska A (1970) Leuko- and oncogenesis in the light of studies on metabolism of magnesium and its turnover in biocenosis. Acta Med Pol 1:289–302

    Google Scholar 

  88. Blondell JW (1980) The anticarcinogenic effect of magnesium. Med Hypotheses 6:863–871

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors on this manuscript contributed to data collection, Writing the manuscript, reviewing and final approval of the manuscript.

Corresponding author

Correspondence to Khadiga S. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the National Research Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahy, E.M., Taha, M.M. & Ibrahim, K.S. Assessment of YKL-40, lipid profile, antioxidant status, and some trace elements in benign and malignant breast proliferation. Mol Biol Rep 47, 6973–6982 (2020). https://doi.org/10.1007/s11033-020-05756-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05756-1

Keywords

Navigation