Skip to main content
Log in

The role of ADRB2 gene polymorphisms in malignancies

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Beta-2-adrenergic receptor is a member of the G protein-coupled receptor superfamily, which is highly expressed in most malignancies. There is increasing evidence showing that beta-2-adrenergic receptors are associated with carcinogenesis, proliferation, immune regulation, invasion, angiogenesis, clinical prognosis and treatment resistance in malignancies. Polymorphisms of the ADRB2 gene have been confirmed to be associated with transcriptional activity, mRNA translation, and beta-2-adrenergic receptor expression and sensitivity. This review discusses clinically relevant examples of single nucleotide polymorphisms of ADRB2 in malignancies and the effects of these polymorphisms on cancer susceptibility, prognosis and treatment response of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization. Cancer facts sheets. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 3 Mar 2021

  2. Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13(6):501–514. https://doi.org/10.1038/embor.2012.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, Brown DG, Colacci A, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH (2015) Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 36(Suppl 1):S232–S253. https://doi.org/10.1093/carcin/bgv038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang D, Lei J, Ma J, Chen X, Sheng L, Jiang Z, Nan L, Xu Q, Duan W, Wang Z, Li X, Wu Z, Wu E, Ma Q, Huo X (2016) β2-adrenogenic signaling regulates NNK-induced pancreatic cancer progression via upregulation of HIF-1α. Oncotarget 7(14):17760–17772. https://doi.org/10.18632/oncotarget.5677

    Article  PubMed  Google Scholar 

  5. Ellaithy A, Gonzalez-Maeso J, Logothetis DA, Levitz J (2020) Structural and biophysical mechanisms of class C G protein-coupled receptor function. Trends Biochem Sci 45(12):1049–1064. https://doi.org/10.1016/j.tibs.2020.07.008

    Article  CAS  PubMed  Google Scholar 

  6. Oostendorp J, Obels PP, Terpstra AR, Nelemans SA, Zaagsma J (2004) Modulation of beta2- and beta3-adrenoceptor-mediated relaxation of rat oesophagus smooth muscle by protein kinase C. Eur J Pharmacol 495(1):75–81. https://doi.org/10.1016/j.ejphar.2004.05.008

    Article  CAS  PubMed  Google Scholar 

  7. Joiner ML, Lisé MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD, Burette AC, Weinberg RJ, Law PY, El-Husseini A, Yan Z, Hell JW (2010) Assembly of a beta2-adrenergic receptor–GluR1 signalling complex for localized cAMP signalling. EMBO J 29(2):482–495. https://doi.org/10.1038/emboj.2009.344

    Article  CAS  PubMed  Google Scholar 

  8. Surinkaew S, Aflaki M, Takawale A, Chen Y, Qi XY, Gillis MA, Shi YF, Tardif JC, Chattipakorn N, Nattel S (2019) Exchange protein activated by cyclic-adenosine monophosphate (Epac) regulates atrial fibroblast function and controls cardiac remodelling. Cardiovasc Res 115(1):94–106. https://doi.org/10.1093/cvr/cvy173

    Article  CAS  PubMed  Google Scholar 

  9. Benovic JL (2002) Novel beta2-adrenergic receptor signaling pathways. J Allergy Clin Immunol 110(6 Suppl):S229-235. https://doi.org/10.1067/mai.2002.129370

    Article  CAS  PubMed  Google Scholar 

  10. Patriarchi T, Buonarati OR, Hell JW (2018) Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by β2 adrenergic receptor/PKA and Ca(2+)/CaMKII signaling. EMBO J. https://doi.org/10.15252/embj.201899771

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guillory AN, Yin X, Wijaya CS, Diaz Diaz AC, Rababa’h A, Singh S, Atrooz F, Sadayappan S, McConnell BK (2013) Enhanced cardiac function in Gravin mutant mice involves alterations in the β-adrenergic receptor signaling cascade. PLoS ONE 8(9):e74784. https://doi.org/10.1371/journal.pone.0074784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Q, Tan Q, Mao K, Yang G, Ma G, Luo P, Wang S, Mei P, Wu F, Xu J, Guo M, Lv Z, Fan J, Zhang S, Wang X, Jin Y (2018) The role of adrenergic receptors in lung cancer. Am J Cancer Res 8(11):2227–2237

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nilsson MB, Le X, Heymach JV (2020) β-adrenergic signaling in lung cancer: a potential role for beta-blockers. J Neuroimmune Pharmacol 15(1):27–36. https://doi.org/10.1007/s11481-019-09891-w

    Article  PubMed  Google Scholar 

  14. Entschladen F, Drell TL, Lang K, Joseph J, Zaenker KS (2004) Tumour-cell migration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol 5(4):254–258. https://doi.org/10.1016/s1470-2045(04)01431-7

    Article  CAS  PubMed  Google Scholar 

  15. Eng JW, Kokolus KM, Reed CB, Hylander BL, Ma WW, Repasky EA (2014) A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunotherapy 63(11):1115–1128. https://doi.org/10.1007/s00262-014-1617-9

    Article  CAS  Google Scholar 

  16. Repasky EA, Eng J, Hylander BL (2015) Stress, metabolism and cancer: integrated pathways contributing to immune suppression. Cancer J 21(2):97–103. https://doi.org/10.1097/ppo.0000000000000107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim TH, Gill NK, Nyberg KD, Nguyen AV, Hohlbauch SV, Geisse NA, Nowell CJ, Sloan EK, Rowat AC (2016) Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J Cell Sci 129(24):4563–4575. https://doi.org/10.1242/jcs.194803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nissen MD, Sloan EK, Mattarollo SR (2018) β-adrenergic signaling impairs antitumor CD8(+) T-cell responses to B-cell lymphoma immunotherapy. Cancer Immunol Res 6(1):98–109. https://doi.org/10.1158/2326-6066.Cir-17-0401

    Article  CAS  PubMed  Google Scholar 

  19. Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL (2018) Adrenergic signaling: a targetable checkpoint limiting development of the antitumor immune response. Front Immunol 9:164. https://doi.org/10.3389/fimmu.2018.00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eng JW, Reed CB, Kokolus KM, Pitoniak R, Utley A, Bucsek MJ, Ma WW, Repasky EA, Hylander BL (2015) Housing temperature-induced stress drives therapeutic resistance in murine tumour models through β2-adrenergic receptor activation. Nat Commun 6:6426. https://doi.org/10.1038/ncomms7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang T, Xing Y, Meng Q, Lu H, Liu W, Yan S, Song Y, Xu X, Huang J, Cui Y, Jia D, Cai L (2019) Mammalian Eps15 homology domain 1 potentiates angiogenesis of non-small cell lung cancer by regulating beta2AR signaling. J Exp Clin Cancer Res 38(1):174. https://doi.org/10.1186/s13046-019-1162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaira K, Kamiyoshihara M, Kawashima O, Endoh H, Imaizumi K, Sugano M, Tanaka S, Fujita A, Kogure Y, Shimizu A, Oyama T, Asao T, Shimizu K, Mogi A (2019) Prognostic impact of beta2 adrenergic receptor expression in surgically resected pulmonary pleomorphic carcinoma. Anticancer Res 39(1):395–403. https://doi.org/10.21873/anticanres.13125

    Article  CAS  PubMed  Google Scholar 

  23. Nilsson MB, Sun H, Diao L, Tong P, Liu D, Li L, Fan Y, Poteete A, Lim SO, Howells K, Haddad V, Gomez D, Tran H, Pena GA, Sequist LV, Yang JC, Wang J, Kim ES, Herbst R, Lee JJ, Hong WK, Wistuba I, Hung MC, Sood AK, Heymach JV (2017) Stress hormones promote EGFR inhibitor resistance in NSCLC: Implications for combinations with beta-blockers. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aao4307

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu P, He J, Liu S, Wang M, Pan B, Zhang W (2016) beta2-adrenergic receptor activation promotes the proliferation of A549 lung cancer cells via the ERK1/2/CREB pathway. Oncol Rep 36(3):1757–1763. https://doi.org/10.3892/or.2016.4966

    Article  CAS  PubMed  Google Scholar 

  25. Bang I, Choi H-J (2015) Structural features of beta 2 adrenergic receptor: crystal structures and beyond. Mol Cells 38(2):105–111. https://doi.org/10.14348/molcells.2015.2301

    Article  CAS  PubMed  Google Scholar 

  26. Parola AL, Kobilka BK (1994) The peptide product of a 5’ leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem 269(6):4497–4505

    Article  CAS  Google Scholar 

  27. McGraw DW, Forbes SL, Kramer LA, Liggett SB (1998) Polymorphisms of the 5’ leader cistron of the human beta2-adrenergic receptor regulate receptor expression. J Clin Investig 102(11):1927–1932. https://doi.org/10.1172/jci4862

    Article  CAS  PubMed  Google Scholar 

  28. McGraw DW, Liggett SB (1999) Coding block and 5 leader cistron polymorphisms of the beta2-adrenergic receptor. Clin Exp Allergy 29(Suppl 4):43–45

    CAS  PubMed  Google Scholar 

  29. Pottier N, Paugh SW, Ding C, Pei D, Yang W, Das S, Cook EH, Pui CH, Relling MV, Cheok MH, Evans WE (2010) Promoter polymorphisms in the β-2 adrenergic receptor are associated with drug-induced gene expression changes and response in acute lymphoblastic leukemia. Clin Pharmacol Ther 88(6):854–861. https://doi.org/10.1038/clpt.2010.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scott MG, Swan C, Wheatley AP, Hall IP (1999) Identification of novel polymorphisms within the promoter region of the human beta2 adrenergic receptor gene. Br J Pharmacol 126(4):841–844. https://doi.org/10.1038/sj.bjp.0702385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnatty SE, Abdellatif M, Shimmin L, Clark RB, Boerwinkle E (2002) Beta 2 adrenergic receptor 5’ haplotypes influence promoter activity. Br J Pharmacol 137(8):1213–1216. https://doi.org/10.1038/sj.bjp.0704935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Panebra A, Wang WC, Malone MM, Pitter DRG, Weiss ST, Hawkins GA, Liggett SB (2010) Common ADRB2 haplotypes derived from 26 polymorphic sites direct beta2-adrenergic receptor expression and regulation phenotypes. PLoS ONE 5(7):e11819–e11819. https://doi.org/10.1371/journal.pone.0011819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Offermanns SRW (ed) (2008) Encyclopedia of molecular pharmacology. Springer, Berlin

    Google Scholar 

  34. Wechsler ME, Lehman E, Lazarus SC, Lemanske RF Jr, Boushey HA, Deykin A, Fahy JV, Sorkness CA, Chinchilli VM, Craig TJ, DiMango E, Kraft M, Leone F, Martin RJ, Peters SP, Szefler SJ, Liu W, Israel E (2006) Beta-adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med 173(5):519–526. https://doi.org/10.1164/rccm.200509-1519OC

    Article  CAS  PubMed  Google Scholar 

  35. Lima JJ (2014) Do genetic polymorphisms alter patient response to inhaled bronchodilators? Expert Opin Drug Metab Toxicol 10(9):1231–1240. https://doi.org/10.1517/17425255.2014.939956

    Article  CAS  PubMed  Google Scholar 

  36. Taylor DR, Hancox RJ, McRae W, Cowan JO, Flannery EM, McLachlan CR, Herbison GP (2000) The influence of polymorphism at position 16 of the beta2-adrenoceptor on the development of tolerance to beta-agonist. J Asthma 37(8):691–700. https://doi.org/10.3109/02770900009087308

    Article  CAS  PubMed  Google Scholar 

  37. Green SA, Turki J, Bejarano P, Hall IP, Liggett SB (1995) Influence of beta 2-adrenergic receptor genotypes on signal transduction in human airway smooth muscle cells. Am J Respir Cell Mol Biol 13(1):25–33. https://doi.org/10.1165/ajrcmb.13.1.7598936

    Article  CAS  PubMed  Google Scholar 

  38. Xie W-Y, He R-H, Zhang J, He Y-J, Wan Z, Zhou C-F, Tang Y-J, Li Z, McLeod HL, Liu J (2019) β-blockers inhibit the viability of breast cancer cells by regulating the ERK/COX-2 signaling pathway and the drug response is affected by ADRB2 single-nucleotide polymorphisms. J Oncol Rep 41(1):341–350. https://doi.org/10.3892/or.2018.6830

    Article  CAS  Google Scholar 

  39. Kay LJ, Suvarna SK, Scola AM, Rostami-Hodjegan A, Chess-Williams R, Peachell PT (2010) Influence of beta2-adrenoceptor gene polymorphisms on beta2-adrenoceptor expression in human lung. Pulm Pharmacol Ther 23(2):71–77. https://doi.org/10.1016/j.pupt.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  40. Shahane G, Parsania C, Sengupta D, Joshi M (2014) Molecular insights into the dynamics of pharmacogenetically important N-terminal variants of the human β2-adrenergic receptor. PLoS Comput Biol 10(12):e1004006–e1004006. https://doi.org/10.1371/journal.pcbi.1004006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhosale S, Nikte SV, Sengupta D, Joshi M (2019) Differential dynamics underlying the Gln27Glu population variant of the β(2)-adrenergic receptor. J Membr Biol 252(4–5):499–507. https://doi.org/10.1007/s00232-019-00093-2

    Article  CAS  PubMed  Google Scholar 

  42. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801. https://doi.org/10.1016/s1470-2045(12)70211-5

    Article  PubMed  Google Scholar 

  43. Schuller HM (2002) Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer 2(6):455–463. https://doi.org/10.1038/nrc824

    Article  CAS  PubMed  Google Scholar 

  44. Shih YM, Chang YJ, Cooke MS, Pan CH, Hu CH, Chao MR, Hu CW (2021) Alkylating and oxidative stresses in smoking and non-smoking patients with COPD: implications for lung carcinogenesis. Free Radical Biol Med 164:99–106. https://doi.org/10.1016/j.freeradbiomed.2020.12.442

    Article  CAS  Google Scholar 

  45. Yoshida K, Gowers KHC, Lee-Six H, Chandrasekharan DP, Coorens T, Maughan EF, Beal K, Menzies A, Millar FR, Anderson E, Clarke SE, Pennycuick A, Thakrar RM, Butler CR, Kakiuchi N, Hirano T, Hynds RE, Stratton MR, Martincorena I, Janes SM, Campbell PJ (2020) Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578(7794):266–272. https://doi.org/10.1038/s41586-020-1961-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masi T, Cekanova M, Walker K, Bernert H, Majidi M, Becker JM, Schuller HM (2005) Nitrosamine 4-(methyinitrosamino)-1-(3-pyridyl)-1 butanone-induced pulmonary adenocarcinomas in Syrian golden hamsters contain beta 2-adrenergic receptor single-nucleotide polymorphisms. Genes Chromosom Cancer 44(2):212–217. https://doi.org/10.1002/gcc.20228

    Article  CAS  PubMed  Google Scholar 

  47. Mei L, Huang C, Wang A, Zhang X (2019) Association between ADRB2, IL33, and IL2RB gene polymorphisms and lung cancer risk in a Chinese Han population. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2019.105930

    Article  PubMed  Google Scholar 

  48. Vavalà T, Giaj Levra M, Novello S (2014) Lung cancer in never smokers: a different disease. Curr Respir Care Rep 3(1):26–34. https://doi.org/10.1007/s13665-013-0071-z

    Article  Google Scholar 

  49. Wang H, Hao B, Chen X, Zhao N, Cheng G, Jiang Y, Liu Y, Lin C, Tan W, Lu D, Wei Q, Jin L, Lin D, He F (2006) Beta-2 adrenergic receptor gene (ADRB2) polymorphism and risk for lung adenocarcinoma: a case-control study in a Chinese population. Cancer Lett 240(2):297–305. https://doi.org/10.1016/j.canlet.2005.09.018

    Article  CAS  PubMed  Google Scholar 

  50. Du Y, Lin Y, Yin K, Zhou L, Jiang Y, Yin W, Lu J (2019) Single nucleotide polymorphisms of let-7-related genes increase susceptibility to breast cancer. Am J Transl Res 11(3):1748–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang XE, Hamajima N, Saito T, Matsuo K, Mizutani M, Iwata H, Iwase T, Miura S, Mizuno T, Tokudome S, Tajima K (2001) Possible association of beta2- and beta3-adrenergic receptor gene polymorphisms with susceptibility to breast cancer. Breast Cancer Res 3(4):264–269. https://doi.org/10.1186/bcr304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Connor A, Baumgartner RN, Kerber RA, O’Brien E, Rai SN, Wolff RK, Slattery ML, Giuliano AR, Risendal BC, Byers TE, Baumgartner KB (2012) ADRB2 G-G haplotype associated with breast cancer risk among Hispanic and non-Hispanic white women: interaction with type 2 diabetes and obesity. Cancer Causes Control 23(10):1653–1663. https://doi.org/10.1007/s10552-012-0043-6

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang J, Dhakal IB, Zhang X, Prizment AE, Anderson KE (2014) Genetic variability in energy balance and pancreatic cancer risk in a population-based case-control study in Minnesota. J Pancreas 43(2):281–286. https://doi.org/10.1097/MPA.0b013e3182a7c829

    Article  Google Scholar 

  54. Takezaki T, Hamajima N, Matsuo K, Tanaka R, Hirai T, Kato T, Ohashi K, Tajima K (2001) Association of polymorphisms in the beta-2 and beta-3 adrenoceptor genes with risk of colorectal cancer in Japanese. Int J Clin Oncol 6(3):117–122. https://doi.org/10.1007/pl00012092

    Article  CAS  PubMed  Google Scholar 

  55. Tian ZQ, Li ZH, Wen SW, Zhang YF, Li Y, Cheng JG, Wang GY (2015) Identification of commonly dysregulated genes in non-small-cell lung cancer by integrated analysis of microarray data and qRT-PCR validation. Lung 193(4):583–592. https://doi.org/10.1007/s00408-015-9726-6

    Article  CAS  PubMed  Google Scholar 

  56. Liu X, Wu WK, Yu L, Li ZJ, Sung JJ, Zhang ST, Cho CH (2008) Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of beta-adrenoceptors. J Pharmacol Exp Ther 326(1):69–75. https://doi.org/10.1124/jpet.107.134528

    Article  CAS  PubMed  Google Scholar 

  57. Liao X, Che X, Zhao W, Zhang D, Bi T, Wang G (2010) The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor κB signaling. Oncol Rep 24(6):1669–1676. https://doi.org/10.3892/or_00001032

    Article  CAS  PubMed  Google Scholar 

  58. Wong HP, Ho JW, Koo MW, Yu L, Wu WK, Lam EK, Tai EK, Ko JK, Shin VY, Chu KM, Cho CH (2011) Effects of adrenaline in human colon adenocarcinoma HT-29 cells. Life Sci 88(25–26):1108–1112. https://doi.org/10.1016/j.lfs.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  59. Zhang P, He X, Tan J, Zhou X, Zou L (2011) β-arrestin2 mediates β-2 adrenergic receptor signaling inducing prostate cancer cell progression. Oncol Rep 26(6):1471–1477. https://doi.org/10.3892/or.2011.1417

    Article  CAS  PubMed  Google Scholar 

  60. Lin X, Luo K, Lv Z, Huang J (2012) Beta-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology 59(114):584–588. https://doi.org/10.5754/hge11271

    Article  CAS  PubMed  Google Scholar 

  61. Lin Q, Wang F, Yang R, Zheng X, Gao H, Zhang P (2013) Effect of chronic restraint stress on human colorectal carcinoma growth in mice. PLoS ONE 8(4):e61435. https://doi.org/10.1371/journal.pone.0061435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sengupta D, Sonar K, Joshi M (2017) Characterizing clinically relevant natural variants of GPCRs using computational approaches. Methods Cell Biol 142:187–204. https://doi.org/10.1016/bs.mcb.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  63. Large V, Hellström L, Reynisdottir S, Lönnqvist F, Eriksson P, Lannfelt L, Arner P (1997) Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Investig 100(12):3005–3013. https://doi.org/10.1172/jci119854

    Article  CAS  PubMed  Google Scholar 

  64. Hocking LJ, Smith BH, Jones GT, Reid DM, Strachan DP, Macfarlane GJ (2010) Genetic variation in the beta2-adrenergic receptor but not catecholamine-O-methyltransferase predisposes to chronic pain: results from the 1958 British Birth Cohort Study. Pain 149(1):143–151. https://doi.org/10.1016/j.pain.2010.01.023

    Article  CAS  PubMed  Google Scholar 

  65. Zhang X, Zhang Y, He Z, Yin K, Li B, Zhang L, Xu Z (2019) Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis 10(11):788. https://doi.org/10.1038/s41419-019-2030-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schuller HM, Tithof PK, Williams M, Plummer H 3rd (1999) The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a beta-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via beta-adrenergic receptor-mediated release of arachidonic acid. Can Res 59(18):4510–4515

    CAS  Google Scholar 

  67. Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, Zhuang Y, Levy LB, Lu C, Gomez DR (2013) Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol 24(5):1312–1319. https://doi.org/10.1093/annonc/mds616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wenjuan Y, Yujun L, Ceng Y (2013) Association of single nucleotide polymorphisms of β2-adrenergic receptor gene with clinicopathological features of pancreatic carcinoma. Acta Histochem 115(3):198–203. https://doi.org/10.1016/j.acthis.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  69. Zhang D, Ma QY, Hu HT, Zhang M (2010) β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFκB and AP-1. Cancer Biol Ther 10(1):19–29. https://doi.org/10.4161/cbt.10.1.11944

    Article  CAS  PubMed  Google Scholar 

  70. Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino R, Pouchy C, Montero MP, Serdjebi C, Kavallaris M, André N (2011) Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2(10):797–809. https://doi.org/10.18632/oncotarget.343

    Article  PubMed  PubMed Central  Google Scholar 

  71. Diaz ES, Karlan BY, Li AJ (2012) Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol 127(2):375–378. https://doi.org/10.1016/j.ygyno.2012.07.102

    Article  CAS  PubMed  Google Scholar 

  72. Hassan S, Karpova Y, Baiz D, Yancey D, Pullikuth A, Flores A, Register T, Cline JM, D’Agostino R Jr, Danial N, Datta SR, Kulik G (2013) Behavioral stress accelerates prostate cancer development in mice. J Clin Investig 123(2):874–886. https://doi.org/10.1172/jci63324

    Article  CAS  PubMed  Google Scholar 

  73. Wolter JK, Wolter NE, Blanch A, Partridge T, Cheng L, Morgenstern DA, Podkowa M, Kaplan DR, Irwin MS (2014) Anti-tumor activity of the beta-adrenergic receptor antagonist propranolol in neuroblastoma. Oncotarget 5(1):161–172. https://doi.org/10.18632/oncotarget.1083

    Article  PubMed  Google Scholar 

  74. Zhou C, Chen X, Zeng W, Peng C, Huang G, Li X, Ouyang Z, Luo Y, Xu X, Xu B, Wang W, He R, Zhang X, Zhang L, Liu J, Knepper TC, He Y, McLeod HL (2016) Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway. Oncotarget 7(42):68314–68327. https://doi.org/10.18632/oncotarget.11599

    Article  PubMed  PubMed Central  Google Scholar 

  75. Montoya A, Amaya CN, Belmont A, Diab N, Trevino R, Villanueva G, Rains S, Sanchez LA, Badri N, Otoukesh S, Khammanivong A, Liss D, Baca ST, Aguilera RJ, Dickerson EB, Torabi A, Dwivedi AK, Abbas A, Chambers K, Bryan BA, Nahleh Z (2017) Use of non-selective β-blockers is associated with decreased tumor proliferative indices in early stage breast cancer. Oncotarget 8(4):6446–6460. https://doi.org/10.18632/oncotarget.14119

    Article  PubMed  Google Scholar 

  76. Powe DG, Voss MJ, Zänker KS, Habashy HO, Green AR, Ellis IO, Entschladen F (2010) Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1(7):628–638. https://doi.org/10.18632/oncotarget.101009

    Article  PubMed  PubMed Central  Google Scholar 

  77. Montoya A, Varela-Ramirez A, Dickerson E, Pasquier E, Torabi A, Aguilera R, Nahleh Z, Bryan B (2019) The beta adrenergic receptor antagonist propranolol alters mitogenic and apoptotic signaling in late stage breast cancer. Biomed J 42(3):155–165. https://doi.org/10.1016/j.bj.2019.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bernabé DG, Tamae AC, Biasoli ÉR, Oliveira SH (2011) Stress hormones increase cell proliferation and regulates interleukin-6 secretion in human oral squamous cell carcinoma cells. Brain Behav Immun 25(3):574–583. https://doi.org/10.1016/j.bbi.2010.12.012

    Article  CAS  PubMed  Google Scholar 

  79. Yueyao D, Yan T, Zhou L, Yin W, Jinsong L (2018) A single-nucleotide polymorphism of the beta 2-adrenergic receptor gene can predict pathological complete response to taxane-and platinum-based neoadjuvant chemotherapy in breast cancer. J Breast Cancer 10:201–206. https://doi.org/10.2147/bctt.S189197

    Article  Google Scholar 

  80. Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzalez-Angulo AM, Hennessy B, Green M, Cristofanilli M, Hortobagyi GN, Pusztai L (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26(8):1275–1281. https://doi.org/10.1200/jco.2007.14.4147

    Article  PubMed  Google Scholar 

  81. Wang WC, Juan AH, Panebra A, Liggett SB (2011) MicroRNA let-7 establishes expression of beta2-adrenergic receptors and dynamically down-regulates agonist-promoted down-regulation. Proc Natl Acad Sci USA 108(15):6246–6251. https://doi.org/10.1073/pnas.1101439108

    Article  PubMed  Google Scholar 

  82. Geretto M, Pulliero A, Rosano C, Zhabayeva D, Bersimbaev R, Izzotti A (2017) Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 7(6):1350–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu J, Li S, Jia W, Deng H, Chen K, Zhu L, Yu F, Su F (2015) Reduced Let-7a is associated with chemoresistance in primary breast cancer. PLoS ONE 10(7):e0133643. https://doi.org/10.1371/journal.pone.0133643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lipworth B, Koppelman GH, Wheatley AP, Le Jeune I, Coutie W, Meurs H, Kauffman HF, Postma DS, Hall IP (2002) Beta2 adrenoceptor promoter polymorphisms: extended haplotypes and functional effects in peripheral blood mononuclear cells. Thorax 57(1):61–66. https://doi.org/10.1136/thorax.57.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Panebra A, Schwarb MR, Glinka CB, Liggett SB (2007) Allele-specific binding of airway nuclear extracts to polymorphic beta2-adrenergic receptor 5’ sequence. Am J Respir Cell Mol Biol 36(6):654–660. https://doi.org/10.1165/rcmb.2006-0394OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grant 2019GSF107042 from the Key Research and Development Plan of Shandong Province (China).

Author information

Authors and Affiliations

Authors

Contributions

SJ devised the conceptual idea and supervised the whole study. YW and SJ wrote, reviewed, and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shujuan Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, S. The role of ADRB2 gene polymorphisms in malignancies. Mol Biol Rep 48, 2741–2749 (2021). https://doi.org/10.1007/s11033-021-06250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06250-y

Keywords

Navigation