Skip to main content
Log in

Achieving End-to-end Fairness in 802.11e Based Wireless Multi-Hop Mesh Networks Without Coordination

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

To mitigate the damaging impacts caused by interference and hidden terminals, it has been proposed to use orthogonal channels in wireless multi-hop mesh networks. We demonstrate however that even if these issues are completely eliminated with perfectly assigned channels, gross unfairness can still exist amongst competing flows which traverse multiple hops. We propose the use of 802.11e’s TXOP mechanism to restore/enforce fairness. The proposed scheme is simple, implementable using off-the-shelf devices and fully decentralised (requires no message passing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. http://www.pdos.lcs.mit.edu/roofnet/roofnet-coords

  2. The slowest rate of 802.11b/g is 1 Mbps, while that of 802.11a is 6 Mbps.

  3. As all links use the same PHY rate, TXOP’s selected according to Eqs. 1 and 2 are the same.

  4. http://www.soekris.com/net4801.htm

  5. http://sourceforge.net/projects/madwifi/

  6. http://dast.nlanr.net/Projects/Iperf/

References

  1. IEEE 802.11 WG (1999) Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std. 802.11

  2. IEEE 802.11 WG (2004) Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: medium access control (MAC) quality of service (QoS) enhancements. IEEE 802.11e/D8.0

  3. Bahl P, Chandra R, Dunagan J (2004) SSCH: slotted seeded channel hopping for capacity improvement in IEEE 802.11 adhoc wireless networks. In: Proc. ACM MOBICOM, Philadelphia, pp 216–230

  4. Li B, Battiti R (2003) Supporting service differentiation with enhancements of the IEEE 802.11 MAC protocol: models and analysis. University of Trento, technical report, DIT-03-024

  5. Bertsekas D, Gallager R (1987) Data networks. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  6. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun 18(3):607–614

    Article  Google Scholar 

  7. Bottigliengo M, Casetti C, Chiasserini CF, Meo M (2004) Short-term fairness for TCP flows in 802.11b WLANs. In: Proc. of IEEE INFOCOM, pp 1383–1392

  8. Celandroni N (2006) Comparison of FEC types with regard to the efficiency of TCP connections over AWGN satellite channels. IEEE Trans Wirel Commun 5(7):1735–1745

    Article  Google Scholar 

  9. Celandroni N, Davoli F, Ferro E, Gotta A (2006) Long-lived TCP connections via satellite: cross-layer bandwidth allocation, pricing, and adaptive control. IEEE/ACM Trans Netw 14(5):1019–1030

    Article  Google Scholar 

  10. De Couto D, Aguayo D, Bicket J, Morris R (2003) A high-throughput path metric for multi-hop wireless routing. In: Proc. of ACM MobiCom, pp 134–146

  11. Draves R, Padhye J, Zill B (2004) Comparison of routing metrics for static multi-hop wireless networks. In: Proc. of ACM SIGCOMM

  12. Duffy K, Leith D, Li T, Malone D (2006) Modeling 802.11 Mesh Networks. IEEE Commun Lett 10(8):635–637

    Article  Google Scholar 

  13. Gambiroza V, Sadeghi B, Knightly EW (2004) End to end performance and fairness in multihop wireless backhaul networks. In: Proc. of ACM MOBICOM

  14. Garetto M, Salonidis T, Knightly EW (2006) Modeling per-flow throughput and capturing starvation in csma multi-hop wireless networks. In: Proc. of IEEE INFOCOM

  15. Heusse M, Rousseau F, Berger-Sabbatel G, Duda A (2003) Performance anomaly of 802.11b. In: Proc. IEEE INFOCOM, San Francisco, pp 836–843

  16. Le Boudec J-Y (2008) Rate adaptation, congestion control and fairness: a tutorial. http://ica1www.epfl.ch/PS_files/LEB3132.pdf

  17. Leith D, Clifford P, Malone D, Ng A (2005) TCP fairness in 802.11e WLANs. IEEE Commun Lett 9(11):964–966

    Article  Google Scholar 

  18. Leith D, Clifford P (2006) A self-managed distributed channel selection algorithm for WLANs. In: ACM/IEEE RAWNET

  19. Li T, Leith D, Malone D, Badarla V (2008) Achieving end-to-end fairness in 802.11e based wireless multi-hop mesh networks. In: Proc. Chinacom, Hangzhou China

  20. Badarla V, Malone D, Leith D (2008) Implementing TCP flow-level fairness using 802.11e in a multi-radio mesh testbed. IEEE Commun Lett 12(4):262–264

    Article  Google Scholar 

  21. Maheshwari R, Gupta H, Das SR (2006) Multichannel MAC protocols for wireless networks. In: Proc. IEEE SECON. Reston, VA, vol 2, pp 393–401

  22. Malone D, Duffy K, Leith D (2007) Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Trans Netw 15(1):159–172

    Article  Google Scholar 

  23. Massoulié L, Roberts J (2002) Bandwidth sharing: objectives and algorithms. IEEE/ACM Trans Netw 10(3):320–328

    Article  Google Scholar 

  24. Mo J, Walrand J (2000) Fair end-to-end window-based congestion control. IEEE/ACM Trans Netw 8(5):556–567

    Article  Google Scholar 

  25. Prasad RS, Dovrolis C, Thottan M (2007) Router buffer sizing revisited: the role of the output/input capacity ratio. CoNEXT

  26. Ramachandran K, Belding-Royer E, Almeroth K, Buddhikot M (2006) Interference-aware channel assignment in multi-radio wireless mesh networks. In: Proc. of IEEE INFOCOM

  27. Raman B (2006) Channel allocation in 802.11-based mesh networks. In: Proc. of IEEE INFOCOM

  28. Raniwala A, De P, Sharma S, Krishnan R, Chiueh T (2007) End-to-end flow fairness over IEEE 802.11-based wireless mesh networks. In: Proc. of IEEE INFOCOM, Mini-Symposium

  29. Stanojevic R, Shorten R (2007) Beyond CHOKe: stateless fair queueing. In: Proc. of EuroFGI NET-COOP

  30. Subramanian VG, Duffy KR, Leith DJ (2009) Existence and uniqueness of fair rate allocations in lossy wireless networks. IEEE Trans Wirel Commun 8:3401–3406

    Article  Google Scholar 

  31. Tan G, Guttag J (2004) Time based fairness improves performance in multi-rate WLANs. In: Proc. USENIX, Boston

  32. Tang D, Baker M (2000) Analysis of A Local-Area Wireless Network. In: Proc. of ACM MobiCom

  33. Tinnirello I, Choi S (2005) Temporal fairness provisioning in multi-rate contention-based 802.11e WLANs. In: Proc. of IEEE WOWMOM

  34. Wu H, Yang F, Tan K, Chen J, Zhang Q, Zhang Z (2006) Distributed channel assignment and routing in multi-radio multi-channel multi-hop wireless networks. J Sel Areas Commun 24:1972–1983

    Article  Google Scholar 

  35. Yang Y, Wang J, Kravets R (2005) Distributed optimal contention window control for elastic traffic in wireless LANs. In: Proc. of IEEE INFOCOM, pp 35–46

  36. Zhao Z, Darbha S, Reddy ALN (2004) A method for estimating the proportion of nonresponsive traffic at a router. IEEE/ACM Trans Netw 12(4):708–718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianji Li.

Additional information

This work is supported by Science Foundation Ireland Grant 03/IN3/I396 and Irish Research Council for Science, Engineering and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Leith, D.J., Badarla, V. et al. Achieving End-to-end Fairness in 802.11e Based Wireless Multi-Hop Mesh Networks Without Coordination. Mobile Netw Appl 16, 17–34 (2011). https://doi.org/10.1007/s11036-009-0212-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-009-0212-3

Keywords

Navigation