Skip to main content
Log in

Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schrödinger Equation

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

Starting from results already obtained for quasi-periodic co-cycles in \(SL(2, \mathbb R),\) we show that the rotation number of the one-dimensional time-continuous Schrödinger equation with Diophantine frequencies and a small analytic potential has the behavior of a \(\frac{1}{2}-\)Hölder function. We give also a sub-exponential estimate of the length of the gaps which depends on its label given by the gap-labeling theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. arXiv:0805.1761v1 [math.DS], accessed 12 May 2008

  2. Bourgain, J.: Hölder regularity of integrated density of states for the almost Mathieu operator in a perturbative regime. Lett. Math. Phys (A Journal for the Rapid Dissemination of Short Contributions in the Field of Mathematical Physics) 51(2), 83–118 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Delyon, F., Souillard, B.: The rotation number for finite difference operators and its properties. Commun. Math. Phys. 89(3), 415–426 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146(3), 447–482 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Goldstein, M., Schlag, W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. (2) 154(1), 155–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hadj Amor, S.: Hölder continuity of the rotation number for quasi-periodic co-cycles in \(SL(2, \mathbb R)\). Commun. Math. Phys. 287, 565–588 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Herman, M.-R.: Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractére local d’un théorème d’Arnol d et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58(3), 453–502 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Sinaĭ, Ja.G.: Structure of the spectrum of a Schrödinger difference operator with almost periodic potential near the left boundary. Funktsional. Anal. i Prilozhen. 19(1), 34–39 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Hadj Amor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amor, S.H. Regularity of the Rotation Number for the One-Dimensional Time-Continuous Schrödinger Equation. Math Phys Anal Geom 15, 331–342 (2012). https://doi.org/10.1007/s11040-012-9113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-012-9113-y

Keywords

Mathematics Subject Classifications (2010)

Navigation