Skip to main content
Log in

A QoS-enhanced intelligent stochastic real-time packet scheduler for multimedia IP traffic

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A re-configurable, QoS-enhanced intelligent stochastic real-time optimal fair packet scheduler, QUEST, for IP routers is proposed and investigated. The objective is to maximize the system QoS subject to the constraint that the processor utilization is kept at 100%. All past work on router schedulers for multimedia traffic were of earlier generation, in that they focused on maximizing utilization whereas being QoS-aware but without explicitly maximizing the QoS. Keeping utilization fixed at nearly 100%, QoS is dynamically maximized, thus moving to the next generation. QUEST’s other unique advantages are three-fold. First, it solves the challenging problem of starvation for low priority processes; second, it solves the major bottleneck of Earliest Deadline First scheduler’s failure at heavy traffic loads. Finally, QUEST offers the benefit of arbitrarily pre-programming the process utilization ratio. Three classes of multimedia IP traffic, namely, VoIP, IPTV and HTTP have been considered. Two most important QoS metrics, namely, packet loss rate (PLR) and mean waiting time, are addressed. All claims are supported by discrete event and Monte Carlo simulations. The proposed scheduler outperforms benchmark schedulers and offers 37% improvement in packet loss rate and 23% improvement in mean waiting time over the best competing current scheduler Accuracy-aware EDF. The proposed scheduler was validated in a test-bed platform of a NetFPGA® router and results were observed with Paessler® PRTG network monitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abhaya VG, Tari Z, Zomaya AY (2014) Performance analysis of EDF scheduling in a multi-priority preemptive M/G/1 queue. IEEE Trans Parallel Distrib Syst 25(8):2149–2158. doi:10.1109/TPDS.2013.171

    Article  Google Scholar 

  2. Aboughazaleh N, Mosse´ D, Childers BR, Melhem R (2006) Collaborative operating system and compiler power management for real-time applications. ACM Trans Embed Comput Syst 5(1):82–115. doi:10.1145/1132357.1132361

    Article  Google Scholar 

  3. Aljaž Osojnik A, Panov P, Džeroski S (2016) Multi-label classification via multi-target regression on data streams. Mach Learn 1–26. doi:10.1007/s10994-016-5613-5

  4. Bril RJ, Lukkein JJ, Verhaegh WFJ (2007) Worst case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption revisited. Proceedings of the 19th Euromicro. Conf. Real-Time System. pp 269–279. doi:10.1109/ECRTS.2007.38

  5. Chen S, Nahrstedt K (1998) An overview of quality of service routing for the next generation high-speed networks: problems and solutions. IEEE Netw 12(6):64–79. doi:10.1109/65.752646

    Article  Google Scholar 

  6. Chen Y, Farely T, Ye N (2004) QoS requirements of network applications on the internet, information knowledge system managements. IOS Press 4(1):55–76

    Google Scholar 

  7. Chib S, Greenberg E (1995) General understanding the Metropolis-hasting algorithm. Am Stat 49(4):327–335. doi:10.1080/00031305.1995.10476177

    Google Scholar 

  8. Cristofaro ND, McGill G, Sallahi A, Davis M, Alsibai A, St-Hilaire M (2009) QoS evaluation of a voice over IP network with video: a case study, Proceedings of Canadian Conference on electrical and computer Engineering, St. John’s, NL, pp 288–292. ISBN: 978-1-4244-3509-8. doi:10.1109/CCECE.2009.5090139

  9. DEVS suite Discrete event system simulator suite, Arizona Center of Integrative Modeling and Simulation of Arizona State University Available: http://acims.asu.edu/software/devs-suite

  10. Doran G, Ray S (2014) A theoretical and empirical analysis of support vector machine methods for multiple-instance classification. Mach Learn 97(1):79–102. doi:10.1007/s10994-013-5429-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Elghazel H, Aussem A (2015) Unsupervised feature selection with ensemble learning. Mach Learn 98(1):157–190. doi:10.1007/s10994-013-5337-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghaderi M, Boutaba R, Kenward GW (2005) Stochastic admission control for quality of service in wireless packet networks. Lecture notes in computer science series 3462:1309–1320. ISBN: 978-3-540-32017-3. doi:10.1007/11422778_105

  13. Ghazel C, Saïdaneb L (2015) Satisfying QoS requirements in NGN networks using a dynamic adaptive queuing delay control method, Proceedings of the 10th international Conference on future networks and communications. Procedia Computer Science 56:225–232. doi:10.1016/j.procs.2015.07.203

    Article  Google Scholar 

  14. Greco L, Fontanelli D, Bicchi A (2011) Design and stability analysis for anytime control via stochastic scheduling. IEEE Trans Autom Control 56(3):571–585. doi:10.1109/TAC.2010.2058497

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin X, Min G (2007) Performance analysis of priority scheduling mechanisms under heterogeneous network traffic. J Comput Syst Sci 73:1207–1220. doi:10.1016/j.jcss.2007.02.008

    Article  MathSciNet  MATH  Google Scholar 

  16. John K, Williams JK (2014) Using random forests to diagnose aviation turbulence. Mach Learn 95(1):51–70. doi:10.1007/s10994-013-5346-7

    Article  MathSciNet  Google Scholar 

  17. Johnston J, Farrington S, Saville R, Szigeti T (2010) Medianet Reference Guide, Cisco, pp12–13

  18. Kang K-D, Son SH, Stankovic JA (2004) Managing deadline miss ratio and sensor data freshness in real-time databases. IEEE Trans Knowl Data Eng 16(10):1200–1216. doi:10.1109/TKDE.2004.61

    Article  Google Scholar 

  19. Khan MA, Ansari AQ (2012) Handbook of research on industrial informatics and manufacturing intelligence: innovations and solutions, IGI Global, EISBN: 9781466602953, pp 395–397. doi:10.4018/978-1-4666-0294-6

  20. Kleinrock L (1975) Queueing systems. Theory. Wiley, Hoboke, vol 1, pp 37–51

  21. Kooti H, Mishra D, Bozorgzadeh E (2011) Reconfiguration-aware real-time scheduling under QoS constraints. Proceedings of the 16th Asia and South Pacific Design Automation Conference (ASP-DAC), Yokohama, pp 141–146. doi:10.1109/ASPDAC.2011.5722174

  22. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real- time environment. J ACM 20(1):46–61. doi:10.1145/321738.321743

    Article  MathSciNet  MATH  Google Scholar 

  23. Lyngsø RB, Pedersen CNS (2001) Complexity of comparing hidden markov models. Proceedings of the 12th Int. Symp. on Algorithms and Computation, New Zealand, Springer Berlin Heidelberg, ISBN: 978-3-540-45678-0, pp 416–428. doi:10.1007/3-540-45678-3_36

  24. Nasri M, Kargahi M, Mohaqeqi M (2012) Scheduling of accuracy-constrained real-time systems in dynamic environments. IEEE Embed Syst Lett 4(3):61–64. doi:10.1109/LES.2012.2195294

    Article  Google Scholar 

  25. NetFPGA® hardware platform. Available: http://netfpga.org/site/#/systems/4netfpga-1g/details/

  26. Paessler PRTG® network monitor. Available: https://www.paessler.com/homepage

  27. Rikli N-E, Almogari S (2013) Efficient priority schemes for the provision of end-to-end quality of service for multimedia traffic over MPLS VPN networks. Journal of King Saud University –Computer and Information Sciences 25(1):89–98. doi:10.1016/j.jksuci.2012.08.001

    Article  Google Scholar 

  28. Saeed Ullah S, Thar K, Hong CS (2016) Management of scalable video streaming in information centric networking. Multimedia Tools Applications 1–28. doi:10.1007/s11042-016-4008-8

  29. Saleh M, Dong L, (2010) Comparing FCFS & EDF scheduling algorithms for real-time packet switching networks, Proceedings of International Conference on Networking, Sensing and Control (ICNSC), Chicago, pp 698–703. doi:10.1109/ICNSC.2010.5461572

  30. Seth K, Anantaraman A, Mueller F, Rotenberg E (2006) FAST: frequency-aware static timing analysis. ACM Trans Embed Comput Syst 5(1):200–224. doi:10.1145/1132357.1132364

    Article  Google Scholar 

  31. Szigeti T, Hattingh C (2005) End-to-end QoS network design: quality of service in LANs, WANs, and VPNs. Cisco Press, Indianapolis, pp 110–112

    Google Scholar 

  32. Thiébaut D, Wolf JL, Stone HS (1992) Synthetic traces for trace-driven simulation of cache memories. IEEE Trans Comput 41(4):388–410. doi:10.1109/12.135552

    Article  Google Scholar 

  33. Toral-Cruz H, Pathan A-SK, Pacheco JCR (2013) Accurate modeling of VoIP traffic QoS parameters in current and future networks with multifractal and Markov models. Math Comput Model 57(11–12):832–2845. doi:10.1016/j.mcm.2011.12.007

    MathSciNet  MATH  Google Scholar 

  34. Wang G (2010) ML estimation of transition probabilities in jump Markov systems via convex optimization. IEEE Trans Aerosp Electron Syst 46(3):1492–1502. doi:10.1109/TAES.2010.5545204

    Article  Google Scholar 

  35. Wang X, Bai Y (2016) A modified MinMax -means algorithm based on PSO. Comput Intell Neurosci 2016:1–13, Article ID 4606384. doi:10.1155/2016/4606384

  36. Wang J, Hou YB (2016) Packet loss rate mapped to the quality of experience. Multimedia Tools Applications 1–36. doi:10.1007/s11042-016-4254-9

  37. Wang X, Khemaissia I, Khalgui M, Li ZW (2015) Dynamic low-power reconfiguration of real-time systems with periodic and probabilistic tasks. IEEE Trans Autom Sci Eng 12(1):258–271. doi:10.1109/TASE.2014.2309479

    Article  Google Scholar 

  38. Zhang Y, Wang S (2015) Detection of Alzheimer’s disease by displacement field and machine learning. Peer J 1–29. doi:10.7717/peerj.1251

  39. Zhang Y, Dong Z, Phillips P, Wang S, Ji G, Yang J, Yuan TF (2015) Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput Neurosci 9(66):1–15. doi:10.3389/fncom.2015.00066

    Google Scholar 

  40. Zhang Y, Wang S, Genlin J (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng, Hindawi Publishing Corporation 2015(2015):1–38, Article ID 931256. doi:10.1155/2015/931256

  41. Zhoua X, Jianbin W, Xu C-Z (2007) Quality-of-service differentiation on the internet: a taxonomy. J Netw Comput Appl 30:354–383. doi:10.1016/j.jnca.2005.07.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. A. K. Jana for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Paul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Pandit, M.K. A QoS-enhanced intelligent stochastic real-time packet scheduler for multimedia IP traffic. Multimed Tools Appl 77, 12725–12748 (2018). https://doi.org/10.1007/s11042-017-4912-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4912-6

Keywords

Navigation