Skip to main content
Log in

Dynamic modeling and tracking control of a car with \(n\) trailers

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Tractor–trailer systems as multibody modular robotic systems have been widely used to increase load transportation capacity. Control of these systems started from motion aid facilities in human-driven vehicles to fully autonomous mobile robots in recent years. The mobility of these systems is restricted due to the presence of nonholonomic constraints of wheels and also to the system severe underactuated nature. Several control problems are under research for autonomous navigation of such systems. Trajectory tracking is one of the main problems in the context of autonomous nonholonomic systems. In this paper, dynamic modeling and control of a car with \(n\) trailers have been developed. First, a dynamic model of the system is obtained. Next, an output feedback kinematic controller and a feedback linearization kinetic controller have been used for tracking control of the system. Finally, experimental results are presented to show the merits of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brockett, R.W.: Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory, pp. 181–191. Birkhäuser, Boston (1983)

    Google Scholar 

  2. Campion, G., Bastin, G., Dandrea Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12, 47–62 (1996)

    Article  Google Scholar 

  3. Kolmanovsky, I., McClamroch, N.H.: Developments in nonholonomic control problems. IEEE Control Syst. 15, 20–36 (1995)

    Article  Google Scholar 

  4. Keymasi Khalaji, A., Moosavian, S.A.A.: Robust adaptive controller for a tractor–trailer mobile robot. IEEE/ASME Trans. Mechatron. 19, 943–953 (2014)

    Article  Google Scholar 

  5. Mohareri, O., Dhaouadi, R., Rad, A.B.: Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88, 54–66 (2012)

    Article  Google Scholar 

  6. Samson, C.: Control of chained systems application to path following and time-varying point-stabilization of mobile robots. IEEE Trans. Autom. Control 40, 64–77 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang Boon, L., Danwei, W.: GPS-based path following control for a car-like wheeled mobile robot with skidding and slipping. IEEE Trans. Control Syst. Technol. 16, 340–347 (2008)

    Article  Google Scholar 

  8. Wang, C.: Semiglobal practical stabilization of nonholonomic wheeled mobile robots with saturated inputs. Automatica 44, 816–822 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yang, F., Wang, C.-L.: Adaptive stabilization for uncertain nonholonomic dynamic mobile robots based on visual servoing feedback. Acta Autom. Sin. 37, 857–864 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Eng. Pract. 16, 1354–1363 (2008)

    Article  Google Scholar 

  11. Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C.: EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots. Inf. Sci. 179, 180–195 (2009)

    Article  MATH  Google Scholar 

  12. Chen, C.-Y., Li, T.-H.S., Yeh, Y.-C., Chang, C.-C.: Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19, 156–166 (2009)

    Article  Google Scholar 

  13. Yang, J., Ma, R., Zhang, Y., Zhao, C.: Sliding mode control for trajectory tracking of intelligent vehicle. Phys. Proc. 33, 1160–1167 (2012)

    Article  Google Scholar 

  14. Hwang, C.-L., Chang, L.-J.: Trajectory tracking and obstacle avoidance of car-like mobile robots in an intelligent space using mixed \(\mbox{H}_{2}/\mbox{H}\_\infty\) decentralized control. IEEE/ASME Trans. Mechatron. 12, 345–352 (2007)

    Article  Google Scholar 

  15. Klančar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55, 460–469 (2007)

    Article  Google Scholar 

  16. Ye, J.: Tracking control for nonholonomic mobile robots: integrating the analog neural network into the backstepping technique. Neurocomputing 71, 3373–3378 (2008)

    Article  Google Scholar 

  17. Chian-Song, C., Kuang-Yow, L.: Hybrid fuzzy model-based control of nonholonomic systems: a unified viewpoint. IEEE Trans. Fuzzy Syst. 16, 85–96 (2008)

    Article  Google Scholar 

  18. Bloss, R.: Robotics comes to farming. Ind. Robot 39, 323 (2012)

    Article  Google Scholar 

  19. Hollingum, J.: Robots in agriculture. Ind. Robot 26, 438–446 (1999)

    Article  Google Scholar 

  20. Roh, J., Woojin, C.: Reversing control of a car with a trailer using a Driver Assistance System. In: IEEE Workshop on Advanced Robotics and Its Social Impacts (ARSO), pp. 99–104 (2010)

    Google Scholar 

  21. Altafini, C.: Some properties of the general \(n\)-trailer. Int. J. Control 74, 409–424 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nakamura, Y., Ezaki, H., Yuegang, T., Woojin, C.: Design of steering mechanism and control of nonholonomic trailer systems. IEEE Trans. Robot. Autom. 17, 367–374 (2001)

    Article  Google Scholar 

  23. Martinez, J.L., Morales, J., Mandow, A., Garcia-Cerezo, A.: Steering limitations for a vehicle pulling passive trailers. IEEE Trans. Control Syst. Technol. 16, 809–818 (2008)

    Article  Google Scholar 

  24. Laumond, J.P.: Controllability of a multibody mobile robot. IEEE Trans. Robot. Autom. 9, 755–763 (1993)

    Article  Google Scholar 

  25. Matsushita, K., Murakami, T.: Nonholonomic equivalent disturbance based backward motion control of tractor–trailer with virtual steering. IEEE Trans. Ind. Electron. 55, 280–287 (2008)

    Article  Google Scholar 

  26. Tanaka, K., Hori, S., Wang, H.O.: Multiobjective control of a vehicle with triple trailers. IEEE/ASME Trans. Mechatron. 7, 357–368 (2002)

    Article  Google Scholar 

  27. Bolzern, P., DeSantis, R.M., Locatelli, A., Masciocchi, D.: Path-tracking for articulated vehicles with off-axle hitching. IEEE Trans. Control Syst. Technol. 6, 515–523 (1998)

    Article  Google Scholar 

  28. Sampei, M., Tamura, T., Kobayashi, T., Shibui, N.: Arbitrary path tracking control of articulated vehicles using nonlinear control theory. IEEE Trans. Control Syst. Technol. 3, 125–131 (1995)

    Article  Google Scholar 

  29. Astolfi, A., Bolzern, P., Locatelli, A.: Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach. IEEE Trans. Robot. Autom. 20, 154–160 (2004)

    Article  Google Scholar 

  30. Divelbiss, A.W., Wen, J.T.: Trajectory tracking control of a car–trailer system. IEEE Trans. Control Syst. Technol. 5, 269–278 (1997)

    Article  Google Scholar 

  31. Keymasi Khalaji, A., Moosavian, S.A.A.: Adaptive sliding mode control of a wheeled mobile robot towing a trailer, Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng., September 28 (2014)

  32. Laumond, J.P., Sekhavat, S., Lamiraux, F.: Guidelines in nonholonomic motion planning for mobile robots. In: Laumond, J.P. (ed.) Robot Motion Planning and Control, vol. 229, pp. 1–53. Springer, Berlin (1998)

    Chapter  Google Scholar 

  33. Lamiraux, F., Laumond, J.P.: Flatness and small-time controllability of multibody mobile robots: application to motion planning. IEEE Trans. Autom. Control 45, 1878–1881 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  35. Rouchon, P., Fliess, M., Lévine, J., Martin, P.: Flatness and motion planning: the car with \(n\) trailers. In: 2nd European Control Conf., Groningen, NL, pp. 1518–1522 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Keymasi Khalaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keymasi Khalaji, A., Moosavian, S.A.A. Dynamic modeling and tracking control of a car with \(n\) trailers. Multibody Syst Dyn 37, 211–225 (2016). https://doi.org/10.1007/s11044-015-9472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9472-9

Keywords

Navigation