Skip to main content
Log in

Dark satellite image enhancement using knee transfer function and gamma correction based on DWT–SVD

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, an improved and simple approach for enhancement of dark and low contrast satellite image based on knee function and gamma correction using discrete wavelet transform with singular value decomposition (DWT–SVD) has been proposed for quality enhancement of feature. In addition, this method can also process the high resolution dark or very low contrast images, and offers best enhanced result using tuning parameter of Gamma. The technique decomposes the input image into four frequency subbands by using DWT and estimates the singular value matrix of the low–low subband image, and then compute the knee transfer function using gamma correction for further improvement of the LL component. Afterward, processed LL band image undergoes IDWT together with the unprocessed LH, HL, and HH subbands to generate an appropriate enhanced image. Although, various histogram equalization approaches has been proposed in the literature, they tend to degrade the overall image quality by exhibiting saturation artifacts in both low- and high-intensity regions. The proposed algorithm overcomes this problem using knee function and gamma correction. The experimental results show that the proposed algorithm enhances the overall contrast and visibility of local details better than the existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashish, B. K., Kumar, A., & Padhy, P. K. (2011). Satellite image processing using discrete cosine transform and singular value decomposition. Advances in Digital Image Processing and Information Technology, 205, 277–290.

  • Bhandari, A. K., Gadde, M., Kumar, A., & Singh, G. K., (2012a). Comparative analysis of different wavelet filters for low contrast and brightness enhancement of multispectral remote sensing images. In Proceedings IEEE International Conference on Machine Vision and Image Processing, pp. 81–86.

  • Bhandari, A. K., Kumar, A., & Padhy, P. K. (2011). Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition. World Academy of Science, Engineering and Technology, 79, 35–41.

    Google Scholar 

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2012b). SVD Based Poor Contrast Improvement of Blurred Multispectral Remote Sensing Satellite Images. In Proceedings of IEEE Third International Conference on Computer and Communication Technology (ICCCT), pp. 156–159.

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2012c). Feature extraction using Normalized Difference Vegetation Index (NDVI): a case study of Jabalpur city. Procedia Technology, 6, 612–621.

    Article  Google Scholar 

  • Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014a). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538–3560.

    Article  Google Scholar 

  • Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014b). Artificial Bee Colony-based satellite image contrast and brightness enhancement technique using DWT-SVD. International Journal of Remote Sensing, 35(5), 1601–1624.

    Article  Google Scholar 

  • Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014c). Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD. ISA Transaction, 53(4), 1286–1296.

    Article  Google Scholar 

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2015a). Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur’s, Otsu and Tsallis functions. Expert Systems with Appication, 42(3), 1573–1601.

    Article  Google Scholar 

  • Bhandari, A. K., Kumar, A., & Singh, G. K. (2015b). Improved feature extraction scheme for satellite images using NDVI and NDWI technique based on DWT and SVD. Arabian Journal of Geosciences. doi:10.1007/s12517-014-1714-2

  • Bhutada, G. G., Anand, R. S., & Saxena, S. C. (2011a). Edge preserved image enhancement using adaptive fusion of images denoised by wavelet and curvelet transform. Digital Signal Processing, 21(1), 118–130.

    Article  Google Scholar 

  • Bhutada, G. G., Anand, R. S., & Saxena, S. C. (2011b). Image enhancement by wavelet-based thresholding neural network with adaptive learning rate. IET Image Processing, 5(7), 573–582.

    Article  MathSciNet  Google Scholar 

  • Cheng, H. D., & Xu, H. J. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern Recognition, 33(5), 809–819.

    Article  Google Scholar 

  • Demirel, H., & Anbarjafari, G. (2010). Satellite image resolution enhancement using complex wavelet transform. IEEE Geoscience and Remote Sensing Society, 7(1), 123–126.

    Article  Google Scholar 

  • Demirel, H., & Anbarjafari, G. (2011a). Discrete wavelet transform-based satellite image resolution enhancement. IEEE Transaction on Geoscience and Remote Sensing, 49(6), 1997–2004.

    Article  Google Scholar 

  • Demirel, H., & Anbarjafari, G. (2011b). Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Transaction on Image Processing, 20(5), 1458–1460.

    Article  MathSciNet  Google Scholar 

  • Demirel, H., Ozcinar, C., & Anbarjafari, G. (2010). Satellite Image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geoscience and Remote Sensing Letters, 7(2), 333–337.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2007). Digital image processing (3rd ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Grzeszczak, A., Mandal, M. K., & Panchanathan, S. (1996). VLSI implementation of discrete wavelet transform. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(4), 421–433.

    Article  Google Scholar 

  • Ikonos image, Sinkhole off coast of Beliz. http://www.satpalda.com/gallery/

  • Kang, S. B., Kapoor, A., & Lischinski, D. (2000). Personalization of image enhancement. In Proceedings of IEEE international conference on computer vision and pattern recognition (CVPR), pp. 1799–1806.

  • Kumar, A., Bhandari, A. K., & Padhy, P. K. (2012). Improved normalised difference vegetation index method based on discrete cosine transform and singular value decomposition for satellite image processing. IET Signal Processing, 6(7), 617–625.

    Article  MathSciNet  Google Scholar 

  • Lee, E., Kim, S., Kang, W., Seo, D., & Paik, J. (2013). Contrast enhancement using dominant brightness level analysis and adaptive intensity transformation for remote sensing images. IEEE Geoscience and Remote Sensing Letters, 10(1), 62–66.

    Article  Google Scholar 

  • Lee, S. (2007). An efficient contrast-based image enhancement in the compressed domain using retinex theory. IEEE Transactions on Circuit and Systems for Video Technology, 17(2), 199–213.

    Article  Google Scholar 

  • Ling, Y., Yan, C., Liu, C., Wang, X., & Li, H. (2012). Adaptive tone-preserved image detail enhancement. The Visual Computer, 28(6–8), 733–742.

    Article  Google Scholar 

  • MATLAB Image Processing Toolbox User Manual, Paris image.

  • Monobe, Y., Yamashita, H., Kurosawa, T., & Kotera, H. (2005). Dynamic range compression preserving local image contrast for digital video camera. IEEE Transactions on Consumer Electronics, 51(1), 1–10.

    Article  Google Scholar 

  • NASA Earth Observatory images, Effects of the Tohoku Tsunami on the Kitakami River, February 21, 2012. http://visibleearth.nasa.gov/view.php?id=77379

  • Oliva, D., Cuevas, E., Pajares, G., Zaldivar, D., & Osuna, V. (2014). A Multilevel Thresholding algorithm using electromagnetism optimization. Neurocomputing, 139, 357–381.

    Article  Google Scholar 

  • Pléiades Satellite Image: Shanghai, China. http://www.satpalda.com/gallery/

  • Shanmugavadivu, P., & Balasubramanian, K. (2014). Particle swarm optimized multi-objective histogram equalization for image enhancement. Optics & Laser Technology, 57, 243–251.

    Article  Google Scholar 

  • Shao, L., Yan, R., Li, X., & Liu, Y. (2014). From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Transactions on Cybernetics, 44(7), 1001–1013.

    Article  Google Scholar 

  • Shao, L., Zhang, H., & De Haan, G. (2008). An overview and performance evaluation of classification-based least squares trained filters”. IEEE Transactions on Image Processing, 17(10), 1772–1782.

    Article  MathSciNet  Google Scholar 

  • Sheet, D., & Garud, H. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56(4), 2475–2480.

    Article  Google Scholar 

  • Soni, V., Bhandari, A. K., Kumar, A., & Singh, G. K. (2013). Improved sub-band adaptive thresholding function for denoising of satellite image based on evolutionary algorithms. IET Signal Processing, 7(8), 720–730.

    Article  Google Scholar 

  • Vishwanath, M., Owens, R. M., & Irwin, M. J. (1995). VLSI architectures for the discrete wavelet transform. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42(5), 305–316.

    Article  MATH  Google Scholar 

  • Yan, R., Shao, L., & Liu, Y. (2013). Nonlocal hierachical dictionary learning using wavelets for image denoising. IEEE Transactions on Image Processing, 22(12), 4689–4698.

    Article  MathSciNet  Google Scholar 

  • Zhong, S., Jiang, X., Wei, J., & Wei, Z. (2013). Image enhancement based on wavelet transformation and pseudo-color coding with phase-modulated image density processing. Infrared Physics & Technology, 58, 56–63.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank to the referees who have contributed to enhancement of the technical contents of this paper. In addition, the authors would like to thank NASA’s earth observatory for providing the satellite images for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bhandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, A.K., Kumar, A., Singh, G.K. et al. Dark satellite image enhancement using knee transfer function and gamma correction based on DWT–SVD. Multidim Syst Sign Process 27, 453–476 (2016). https://doi.org/10.1007/s11045-014-0310-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0310-7

Keywords

Navigation