Skip to main content

Advertisement

Log in

Calcination of Rod-like Hydroxyapatite Nanocrystals with an Anti-sintering Agent Surrounding the Crystals

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Sintering-free nanocrystals of calcined hydroxyapatite (HAp) having a rod-like morphology were fabricated by calcination at 800°C for 1 h with an anti-sintering agent surrounding original HAp particles and the agent was subsequently removed after calcination. The original HAp particles having a rod-like morphology with a size ranging from 30 to 80 nm (short axis) and 300 to 500 nm (long axis) were prepared by wet chemical process, and poly(acrylic acid, calcium salt) (PAA-Ca) was used as the anti-sintering agent. In the case of calcination without additives, the mean size of HAp crystals dispersed in an ethanol medium increased by about 4 times and the specific surface area of the crystals exhibited a 25% decrease compared to those of the original HAp particles because of calcination-induced sintering among the crystals. On the other hand, the HAp crystals calcined with the anti-sintering agent, PAA-Ca, could be dispersed in an ethanol medium at the same size as the original particles, and they preserved the specific surface area after calcination. These results indicate that PAA-Ca and/or its thermally decomposed product, CaO, surrounded the HAp particles and protected them against calcination-induced sintering during calcination. The HAp crystals calcined with PAA-Ca showed high crystallinity, and no other calcium phosphate phases could be detected after washing with water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki H., 1991. Science and Medical Application of Hydroxyapatite. Takayama Press System Center Co., Inc

  • Barralet J.E., Best S.M. and Bonfield W. (2000) Effect of sintering parameters on the density and microstructure of carbonate hydroxyapatite. J. Mater. Sci. Mater. Med. 11:719–724

    Article  CAS  Google Scholar 

  • Bernache-Assollant D., Ababoua A., Championa E. and Heughebaertb M. (2003) Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth. J. Eur. Ceram. Soc. 23: 229–241

    Article  CAS  Google Scholar 

  • Bonapasta A.A., Buda F. and Colombet P. (2001) Interaction between Ca ions and poly(acrylic acid) chains in macro-defect-free cements: A theoretical study. Chem. Mater. 13: 64–70

    Article  CAS  Google Scholar 

  • Carless J.E. and Foster A.A. (1966) Accelerated crystal growth of sulfathiazole by temperature cycling. J. Pharmaceut. Pharmacol. 18: 697–708

    CAS  Google Scholar 

  • Cheng Z.H., Yasukawa A., Kandori K. and Ishikawa T. (1998) FTIR study on incorporation of CO2 into calcium hydroxyapatite. J. Chem. Soc. Faraday Trans. 94: 1501–1505

    Article  Google Scholar 

  • Cushing B.L., Kolesnichenko V.L. and O’Connor C.J. (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104: 3893–3946

    Article  CAS  Google Scholar 

  • Emerson W.H. and Fisher E.E. (1962) The infrared absorption spectra of carbonate in calcified tissue. Arch. Oral. Biol. 7: 671–683

    Article  CAS  Google Scholar 

  • Fowler B.O. (1974) Infrared studies of apatites. I Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 13: 194–206

    Article  CAS  Google Scholar 

  • Furuzono T., Kishida A. and Tanaka J. (2004) Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(γ-methacryloxypropyl trimethoxysilane)-grafted silk fibroin fibers through chemical bonding. J. Mater. Sci. Mater. Med. 15: 19–23

    Article  CAS  Google Scholar 

  • Furuzono T., Sonoda K. and Tanaka J. (2001) A hydroxyapatite coating covalently linked onto a silicone implant material. J. Biomed. Mater. Res. 56: 9–12

    Article  CAS  Google Scholar 

  • Furuzono T., Wang P., Korematsu A., Miyazaki K., Oido-Mori M., Kowashi Y., Ohura K., Tanaka J. and Kishida A. (2003) Physical and biological evaluations of sintered hydroxyapatite/silicone composite with covalent bonding for a percutaneous implant material. J. Biomed. Mater. Res. B: Appl. Biomater. 65B: 217–226

    Article  CAS  Google Scholar 

  • Furuzono T., M. Masuda, M. Okada, S. Yasuda, H. Kadono, R. Tanaka & K. Miyatake, 2006. Increase of cell adhesiveness on poly(ethylene terephthalate) fabric by coating of sintered hydroxyapatite nanocrystals for development of an artificial blood vessel. ASAIO J. (in press)

  • Gibson I.R. and Bonfield W. (2002) Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J. Biomed. Mater. Res. 59: 697–708

    Article  CAS  Google Scholar 

  • Ishikawa K., Ishikawa Y. and Kuwayama N. (1991) Preparation of carbonate-bearing hydroxyapatites and their sintering properties. Chem. Express 6: 463–466

    CAS  Google Scholar 

  • Jarcho M., Bolen C.H., Thomas M.B., Bobick J., Kay J.F. and Doremus R.H. (1976) Hydroxylapatite synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11: 2027–2035

    Article  CAS  Google Scholar 

  • Kawasaki T. (1991) Hydroxyapatite as a liquid chromatographic packing. J. Chromatogr. 544: 147–184

    Article  CAS  Google Scholar 

  • Landi E., Tampieri A., Celotti G. and Sprio S. (2000) Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc. 20: 2377–2387

    Article  CAS  Google Scholar 

  • Lim G.K., Wang J., Ng S.C. and Gan L.M. (1996) Processing of fine hydroxyapatite powders via an inverse microemulsion route. Mater. Lett. 28: 431–436

    Article  CAS  Google Scholar 

  • Masuda Y., Matsubara K. and Sakka S. (1990) Synthesis of hydroxyapatite from metal alkoxides through sol–gel technique. J. Ceram. Soc. Jpn. 98: 1255–1266

    CAS  Google Scholar 

  • Misra D.N. (1993) Adsorption of low-molecular-weight sodium polyacrylate on hydroxyapatite. J. Dent. Res. 10: 1418–1422

    Google Scholar 

  • Okada M. & T. Furuzono, 2006. Nano-sized ceramic particles of hydroxyapatite calcined with an anti-sintering agent. J. Nanosci. Nanotech. (in press)

  • Papargyris A.D., Botis A.I. and Papargyri S.A. (2002) Synthetic routes for hydroxyapatite powder production. Key. Eng. Mater. 206–213: 83–86

    Article  Google Scholar 

  • Sanchez C. and Livage J. (1990) Sol–gel chemistry from metal alkoxide precursors. New J. Chem. 14: 513–521

    CAS  Google Scholar 

  • Schmidt H.K. (2000) Nanoparticles for ceramic and nanocomposite processing. Mol. Cryst. Liq. Cryst. 353: 165–179

    CAS  Google Scholar 

  • Schmidt H.K., Geiter E., Mennig M., Krug H., Becker C. and Winkler R.-P. (1998) The sol–gel process for nano-technologies: New nanocomposites with interesting optical and mechanical properties. J. Sol–Gel Sci. Tech. 13: 397–404

    Article  CAS  Google Scholar 

  • Sindhu S. and Valiyaveettil S. (2004) Design and synthesis of optically transparent calcium incorporated polymer complex. J. Polym. Sci. B: Polym. Phys. 42: 4459–4465

    Article  CAS  Google Scholar 

  • Somiya S., Ioku K. and Yoshimura M. (1988) Hydrothermal synthesis and characterization of fine apatite crystals. Mater. Sci. Forum 34–36:371–378

    Google Scholar 

  • Sonoda K., Furuzono T., Walsh D., Sato K. and Tanaka J. (2002) Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics 151:321–327

    Article  CAS  Google Scholar 

  • Suchanek W., Yashima M., Kakihana M., Yoshimura M. (1997) Hydroxyapatite/hydroxyapatite-whisker composites without sintering additives: Mechanical properties and microstructural evolution. J. Am. Ceram. Soc. 80:2805–2813

    Article  CAS  Google Scholar 

  • Taylor M.G., Parker S.F., Simkiss K. and Mitchell P.C.H. (2001) Bone mineral: Evidence for hydroxy groups by inelastic neutron scattering. Phys. Chem. Chem. Phys. 3: 1514–1517

    Article  CAS  Google Scholar 

  • Yoshida Y., Van Meerbeek B., Nakayama Y., Yoshioka M., Snauwaert J., Abe Y., Lambrechts P., Vanherle G. and Okazaki M. (2001) Adhesion to and decalcification of hydroxyapatite by carboxylic acids. J. Dent. Res. 80: 1565–1569

    CAS  Google Scholar 

  • Yoshimura M., Suda H., Okamoto K. and Ioku K. (1994) Hydrothermal synthesis of biocompatible whiskers. J. Mater. Sci. 29: 3399–3402

    Article  CAS  Google Scholar 

  • Zabetakis P.M., Cotell C.M., Chrisey D.B. and Auyeung R.C. (1994) Pulsed laserdeposition of thin film hydroxyapatite. Applications for flexible catheters. ASAIO J. 40: 869–899

    Article  Google Scholar 

Download references

Acknowledgment

We thank Dr. Y. Yokogawa and Dr. K. Sato of the Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), for helpful discussions. This work was supported by a Research Grant for Cardiovascular Diseases from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Furuzono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, M., Furuzono, T. Calcination of Rod-like Hydroxyapatite Nanocrystals with an Anti-sintering Agent Surrounding the Crystals. J Nanopart Res 9, 807–815 (2007). https://doi.org/10.1007/s11051-006-9126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9126-1

Key words

Navigation