Skip to main content
Log in

Insight into optical properties of strain-free quantum dot pairs

  • Brief communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Self-assembled GaAs/AlGaAs quantum dot pairs (QDPs) are grown by molecular beam epitaxy using high temperature droplet epitaxy technique. A typical QDP consists of dual-size quantum dots as observed based on atomic force microscopy image. The average height of quantum dot is 5.7 nm for the large quantum dots and 4.6 nm for the small ones. The average peak-to-peak distance of the two dots is about 75 nm. The optical properties of GaAs QDPs are studied by measuring excitation power-dependent and temperature-dependent photoluminescence. Unique photoluminescence properties have been observed from both excitation power-dependent and temperature-dependent measurements. Excitation power-dependent as well as temperature-dependent PL measurements have suggested lateral exciton transfer in the QDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

QD:

Quantum dot

QDM:

Quantum dot molecule

PL:

Photoluminescence

S–K:

Stranski–Krastanow

QDP:

Quantum dot pair

AFM:

Atomic force microscopy

References

  • AbuWaar ZY, Wang ZM, Lee JH, Salamo GJ (2006) Observation of Ga droplet formation on (311)A and (511)A GaAs surfaces. Nanotechnology 17:4037–4040

    Article  CAS  Google Scholar 

  • Bouzaïene L, Sfaxi L, Baira M, Maaref H, Bru-Chevallier C (2010) Power density and temperature dependent multi-excited states in InAs/GaAs quantum dots. J Nanopart Res: 1–6. doi:10.1007/s11051-010-0024-1

  • Dai YT, Fan JC, Chen YF, Lin RM, Lee SC, Lin HH (1997) Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses. J Appl Phys 82:4489

    Article  CAS  Google Scholar 

  • Hanke M, Schmidbauer M, Grigoriev D, Schäfer P, Köhler R, Metzger TH, Wang ZM, Mazur YI, Salamo GJ (2006) Zero-strain GaAs quantum dot molecules as investigated by x-ray diffuse scattering. Appl Phys Lett 89:053116

    Article  Google Scholar 

  • Heitz R, Mukhametzhanov I, Madhukar A, Hoffmann A, Bimberg D (1999) Temperature dependent optical properties of self-organized InAs/GaAs quantum dots. J Electron Mater 28:520–527

    Article  CAS  Google Scholar 

  • Ledentsov NN, Shchukin VA, Grundmann M, Kirstaedter N, Böhrer J, Schmidt O, Bimberg D, Ustinov VM, Egorov AY, Zhukov AE, Kop’ev PS, Zaitsev SV, Gordeev NY, Alferov ZI, Borovkov AI, Kosogov AO, Ruvimov SS, Werner P, Gösele U, Heydenreich J (1996) Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. Phys Rev B 54:8743

    Article  CAS  Google Scholar 

  • Lee JH, Wang ZM, Strom NW, Mazur YI, Salamo GJ (2006) InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Appl Phys Lett 89:202101

    Article  Google Scholar 

  • Lee JH, Wang ZM, Kim NY, Salamo GJ (2009) Size and density control of in droplets at near room temperatures. Nanotechnology 20:285602

    Article  CAS  Google Scholar 

  • Li S, Xia J (1997) Intraband optical absorption in semiconductor coupled quantum dots. Phys Rev B 55:15434–15437

    Article  CAS  Google Scholar 

  • Li S, Xia J (2007) Electronic structures of N quantum dot molecule. Appl Phys Lett 91:092119

    Article  Google Scholar 

  • Li S, Xia J, Yuan Z, Xu Z, Ge W, Wang X, Wang Y, Wang J, Chang L (1996) Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys Rev B 54:11575–11581

    Article  CAS  Google Scholar 

  • Li S, Abliz A, Yang F, Niu Z, Feng S, Xia J, Hirose K (2003) Electron transport through coupled quantum dots. J Appl Phys 94:5402

    Article  CAS  Google Scholar 

  • Liang B, Wang Z, Wang X, Lee J, Mazur YI, Shih C, Salamo GJ (2008) Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy. ACS Nano 2(11):2219–2224

    Article  CAS  Google Scholar 

  • Livermore C, Crouch CH, Westervelt RM, Campman KL, Gossard AC (1996) The Coulomb blockade in coupled quantum dots. Science 274:1332–1335

    Article  CAS  Google Scholar 

  • Mano T, Kuroda T, Kuroda K, Sakoda K (2009) Self-assembly of quantum dots and rings by droplet epitaxy and their optical properties. J Nanophotonics 3:031605

    Article  Google Scholar 

  • Polimeni A, Patanè A, Henini M, Eaves L, Main P (1999) Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots. Phys Rev B 59:5064–5068

    Article  CAS  Google Scholar 

  • Pomraenke R, Lienau C, Mazur YI, Wang ZM, Liang B, Tarasov GG, Salamo GJ (2008) Near-field optical spectroscopy of GaAs/AlyGa1-yAs quantum dot pairs grown by high-temperature droplet epitaxy. Phys Rev B 77:075314

    Article  Google Scholar 

  • Sanguinetti S, Mano T, Oshima M, Tateno T, Wakaki M, Koguchi N (2002) Temperature dependence of the photoluminescence of InGaAs/GaAs quantum dot structures without wetting layer. Appl Phys Lett 81:3067

    Article  CAS  Google Scholar 

  • Schramm A, Tukiainen A, Aho A, Pessa M (2009) Comparing morphology studies of GaAs quantum dots grown by droplet epitaxy on GaInP and GaAs. J Cryst Growth 311:2317–2320

    Article  CAS  Google Scholar 

  • Somaschini C, Bietti S, Koguchi N, Sanguinetti S (2009) Fabrication of multiple concentric nanoring structures. Nano Lett 9:3419–3424

    Article  CAS  Google Scholar 

  • Stinaff EA, Scheibner M, Bracker AS, Ponomarev IV, Korenev VL, Ware ME, MDoty F, Reinecke TL, Gammon D (2006) Optical signatures of coupled quantum dots. Science 311:636–639

    Article  CAS  Google Scholar 

  • Wang ZM, Holmes K, Mazur YI, Ramsey KA, Salamo GJ (2006) Self-organization of quantum-dot pairs by high-temperature droplet epitaxy. Nanoscale Res Lett 1:57–61

    Article  Google Scholar 

  • Wang ZM, Mazur YI, Sablon KA, Mishima TD, Johnson MB, Salamo GJ (2008) Unusual role of the substrate in droplet-induced GaAs/AlGaAs quantum-dot pairs. Phys Status Solidi 2:281–283

    CAS  Google Scholar 

  • Wu J, Shao D, Dorogan VG, Li AZ, Li S, Decuir EA, Manasreh MO, Wang ZM, Mazur YI, Salamo GJ (2010) Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy. Nano Lett 10:1512–1516

    Article  CAS  Google Scholar 

  • Yamagiwa M, Mano T, Kuroda T, Tateno T, Sakoda K, Kido G, Koguchi N, Minami F (2006) Self-assembly of laterally aligned GaAs quantum dot pairs. Appl Phys Lett 89:113115

    Article  Google Scholar 

  • Yang CC, Li S (2008) Size, dimensionality, and constituent stoichiometry dependence of bandgap energies in semiconductor quantum dots and wires. J Phys Chem C 112:2851–2856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the MRSEC Program of NSF Grant No. (DMR-0520550) and the Arkansas Biosciences Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming M. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Wang, Z.M., Dorogan, V.G. et al. Insight into optical properties of strain-free quantum dot pairs. J Nanopart Res 13, 947–952 (2011). https://doi.org/10.1007/s11051-010-0219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0219-5

Keywords

Navigation