Skip to main content
Log in

Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ag nanowire (AgNW) films are receiving increasing attention as new transparent conductive films poised to replace indium tine oxide materials. However, coating of AgNW surfaces with polyvinylpyrrolidone (PVP) and other impurities during synthesis causes large contact resistance between the wires leading to low conductivities in the absence of additional treatments to fuse the overlapped AgNWs together. In the present work, we demonstrated a simple method to synthesize AgNWs by the reduction of AgNO3 using PVP as the reducing agent assisted by trace amounts of salts in ethanol. The shape and yield of the AgNWs depended significantly on the concentrations of these trace salts and on reaction temperatures. The silver nanowires were about 5–20 μm in length and showed a uniform diameter of about 70 nm. A detailed growth mechanism of the AgNWs has been proposed on the basis of the observations recorded by varying these synthesis parameters. Further, the AgNWs were used to form a transparent film, which without any additional treatments showed a sheet resistance of 10.4 Ω/sq and a transmittance of 81.9 % at 550 nm. The performance of the films was attributed to the trace amounts of residual impurities on the surface of the AgNWs and to the special V-shaped morphology of the wires prepared with the solvothermal process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bai J, Li Y, Yang S, Du J, Wang S, Zhang C, Yang Q, Chen X (2007) Synthesis of AgCl/PAN composite nanofibres using an electrospinning method. Nanotechnology 18:305601

    Article  Google Scholar 

  • Batabyal SK, Basu C, Das AR, Sanyal GSJ (2007) Green chemical synthesis of silver nanowires and microfibers using starch. Biobased Mater Bioenergy 1:143–147

    Google Scholar 

  • Chen D, Qiao X, Qiu X, Chen J, Jiang R (2010) Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J Colloid Inter Sci 344:286–291

    Article  CAS  Google Scholar 

  • Chen D, Zhu G, Zhu X, Qiao X, Chen J (2011) Controlled synthesis of monodisperse silver nanocubes via a solvothermal method. J Mater Sci: Mater Electron 22:1788–1795

    Article  CAS  Google Scholar 

  • Hu JQ, Chen Q, Xie ZX, Han GB, Wang RH, Ren B, Zhang Y, Yang ZL, Tian ZQ (2004) A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 14:183–189

    Article  CAS  Google Scholar 

  • Hu L, Kim HS, Lee J, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963

    Article  CAS  Google Scholar 

  • Jeong S, Woo K, Kin D, Lim S, Kim JS, Shin H, Xia Y, Moon J (2008) Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater 18:679–686

    Article  CAS  Google Scholar 

  • Jiang XC, Xiong SX, Tian ZA, Chen CY, Chen WM, Yu AB (2011) Twinned structure and growth of V-shaped silver nanowires generated by a polyol-thermal approach. J Phys Chem C 115:1800–1810

    Article  CAS  Google Scholar 

  • Jiu J, Murai K, Kim D, Kim K, Suganuma K (2009) Preparation of Ag nanorods with high yield by polyol process. Mater Chem Phys 114:333–338

    Article  CAS  Google Scholar 

  • Jiu J, Murai K, Suganuma K (2010) Synthesis of silver nanorods and application for die attach material in devices. J Mater Sci: Mater Electron 21:713–718

    Article  CAS  Google Scholar 

  • Jiu J, Tokuno T, Nogi M, Suganuma K (2012) Synthesis and application of Ag nanowires via a trace salt assisted hydrothermal process. J Nanopart Res 14:975

    Article  Google Scholar 

  • Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J Mater Chem 18:437–441

    Article  CAS  Google Scholar 

  • Kottmann JP, Martin OJF (2001) Influence of the cross section and the permittivity on the plasmon-resonance spectrum of silver nanowires. Appl Phys B 73:299–304

    Article  CAS  Google Scholar 

  • Kundu S, Huitink D, Wang K, Liang H (2010) Photochemical formation of electrically conductive silver nanowires on polymer scaffolds. J Colloid Interface Sci 344:334–342

    Article  CAS  Google Scholar 

  • Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    Article  CAS  Google Scholar 

  • Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82

    Article  CAS  Google Scholar 

  • Riveros G, Green S, Cortes A, Gomez H, Marotti RE, Dalchiele EA (2006) Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology 17:561–570

    Article  CAS  Google Scholar 

  • Shi H, Hu B, Yu X, Zhao R, Ren X, Liu S, Liu J, Feng M, Xu A, Yu S (2010) Ordering of disordered nanowires: spontaneous formation of highly aligned ultralong Ag nanowire films at oil–water–air interface. Adv Funct Mater 20:958–964

    Article  CAS  Google Scholar 

  • Staleva H, Skrabalak SE, Carey CR, Kosel T, Xia Y, Hartland GV (2009) Coupling to light, and transport and dissipation of energy in silver nanowires. Phys Chem Chem Phys 11:5889–5896

    Article  CAS  Google Scholar 

  • Sun Y (2010) Silver nanowires: unique templates for functional nanostructures. Nanoscale 2:1626–1642

    Article  CAS  Google Scholar 

  • Sun X, Li Y (2005) Cylindrical silver nanowires: preparation, structure, and optical properties. Adv Mater 17:2626–2630

    Article  CAS  Google Scholar 

  • Sun Y, Gates B, Mayers B, Xia Y (2002a) Crystalline silver nanowires by soft solution processing. Nano Lett 2:165–168

    Article  CAS  Google Scholar 

  • Sun Y, Yin Y, Mayer B, Herricks T, Xia Y (2002b) Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745

    Article  CAS  Google Scholar 

  • Tang X, Tsuji M, Jiang P, Nishioa M, Janga S, Yoon S (2009) Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids Surf A: Physicochem Eng Aspects 338:33–39

    Article  CAS  Google Scholar 

  • Toriyama T, Ishiwatari T (2008) Preparation of glue joints and bridges between Ag nanowires and their metallization. A possible method for nano-soldering. J Mater Chem 18:5537–5542

    Article  CAS  Google Scholar 

  • Wang X, Yuan Z (2010) Electronic transport behavior of diameter-graded Ag nanowires. Phys Lett 374:2267–2269

    Article  CAS  Google Scholar 

  • Wang Z, Chen X, Liu J, Zhang M, Qian Y (2004) Glucose reduction route synthesis of uniform silver nanowires in large-scale. Chem Lett 33:1160–1161

    Article  CAS  Google Scholar 

  • Wang Z, Liu J, Chen X, Wan J, Qian Y (2005) A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem Eur J 11:160–163

    Article  Google Scholar 

  • Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  • Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami MJ (2007) Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. Phys Chem C 111:9095–9104

    Article  CAS  Google Scholar 

  • You T, Xu S, Sun S, Song X (2009) Controllable synthesis of pentagonal silver nanowires via a simple alcohol-thermal method. Mater Lett 63:920–922

    Article  CAS  Google Scholar 

  • Yu Z, Zhang Q, Li L, Chen Q, Niu X, Liu J, Pei Q (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    Article  CAS  Google Scholar 

  • Zeng X, Zhang Q, Yu R, Lu C (2010) A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv Mater 22:4484–4488

    Article  CAS  Google Scholar 

  • Zhao T, Fan J, Cui J, Liu J, Xu X, Zhu M (2011) Microwave-controlled ultrafast synthesis of uniform silver nanocubes and nanowires. Chem Phys Lett 501:414–418

    Article  CAS  Google Scholar 

  • Zheng W, Lu X, Wang W, Wang Z, Song M, Wang Y, Wang C (2010) Fabrication of novel Ag nanowires/poly(vinylidene fluoride) nanocomposite film with high dielectric constant. Phys Status Solidi A 207:1870–1873

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinting Jiu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 472 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiu, J., Sugahara, T., Nogi, M. et al. Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes. J Nanopart Res 15, 1588 (2013). https://doi.org/10.1007/s11051-013-1588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1588-3

Keywords

Navigation