Skip to main content

Advertisement

Log in

Machine Learning Prediction of Ore Deposit Genetic Type Using Magnetite Geochemistry

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Magnetite geochemistry is crucial for the discrimination of ore deposit genetic type. Traditional two-dimensional discrimination diagrams based on particular data for limited deposits cannot meet the requirements of high-precision classification. The continuous compilation of magnetite geochemical big data and high-precision machine learning algorithms provide a new research route. In this study, a laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) magnetite geochemical dataset compiled from published literature for different geological environments worldwide was used to train different machine learning (ML) classifiers, including random forest, support vector machine, and multilayer perceptron neural network, to predict the genetic type of ore deposits. To verify the efficacy of the classifier, LA–ICP–MS analysis was performed on magnetite samples collected from the Makeng and Luoyang iron deposits in Fujian Province, southeastern China. The obtained data were used to predict the ore deposit genetic type with the aid of the ML classifiers. The classifiers established by all three algorithms yielded good predictive outcomes. The results were consistent with those obtained from detailed petrogeochemical and isotopic studies, showing that the deposits are skarn-type, validating the suitability of the classifier. This article also provides an executable program of the classifiers for anyone to use. The executable program meets the requirements for ore deposit-type classification and can be considered a powerful tool for magnetite exploration and prospecting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data Availability

The online version contains supplementary materials (archived Table S1 (LA–ICP–MS trace element compositions of magnetite from published literature), S2 (Processed LA–ICP–MS data used to build the model), S3 (The training data in the study), S4 (Electron probe microanalysis (wt.%) of magnetite from the Makeng and Luoyang Fe deposits), S5 (LA–ICP–MS trace element compositions of magnetite from the Makeng and Luoyang Fe deposits), S6 (All hyperparameters in the models and the optimal values), S7 (Classification report for the RF and SVM classifiers (without removing outliers)), S8 (Test set data for Chuquicamata porphyry deposit), S9 (Test set data for Kalatonke magmatic Cu–Ni sulfide deposit), S10 (Test set data for the Makeng deposit), S11 (Test set data for the Luoyang deposit), and Figure S1 (Electron microscope images of magnetite from the Makeng and Luoyang deposits), S2 (Learning curve of the RF, SVM and MLP algorithm), S3(Magnetite trace element concentrations for different deposit types (without removing outliers)), S4 (Confusion matrices of the validation set (without removing outliers)) and an executable program (Magnetite_Classifier)) available at https://github.com/Peng2001200173/Supplementary_Material.git.

Code Availability

Names of the codes: MLP classifier, RF classifier, and SVM classifier. License type: GNU General Public License v3.0. Running the codes provided in this study requires a Python environment and pandas and scikit-learn libraries. The source codes are available for downloading at the link https://github.com/Peng2001200173/Classifier.git.

References

  • Acosta-Góngora, P., Gleeson, S. A., Samson, I. M., Ootes, L., & Corriveau, L. (2014). Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the great bear magmatic Zone, NWT Canada. Economic Geology, 109(7), 1901–1928.

    Article  Google Scholar 

  • Baker, T., Van Achterberg, E., Ryan, C. G., & Lang, J. R. (2004). Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology, 32(2), 117–120.

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121–167.

    Article  Google Scholar 

  • Canil, D. (1999). Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochimica et Cosmochimica Acta, 63(3), 557–572.

    Article  Google Scholar 

  • Canil, D., & Fedortchouk, Y. (2000). Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. Journal of Geophysical Research: Solid Earth, 105(B11), 26003–26016.

    Article  Google Scholar 

  • Canil, D., Grondahl, C., Lacourse, T., & Pisiak, L. K. (2016). Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia Canada. Ore Geology Reviews, 72, 1116–1128.

    Article  Google Scholar 

  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

    Article  Google Scholar 

  • Chen, S., Xie, J., Xu, C., & Guo, W. (1985). The origin of Makeng iron deposit. Fujian. Geochimica, 04, 350–357.

    Google Scholar 

  • Chen, W. T., Zhou, M., Li, X., Gao, J., & Hou, K. (2015). In-situ LA-ICP-MS trace elemental analyses of magnetite: Cu-(Au, Fe) deposits in the Khetri copper belt in Rajasthan Province NW India. Ore Geology Reviews, 65, 929–939.

    Article  Google Scholar 

  • Chen, Y. (2002). New knowledge of the information cause of ore deposit during the exploitation process of makeng iron mine. Metal Mine, 11, 50–52.

    Google Scholar 

  • Dare, S., Barnes, S. J., & Beaudoin, G. (2012). Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination. Geochimica Et Cosmochimica Acta, 88, 27–50.

    Article  Google Scholar 

  • Dare, S. A. S., Barnes, S., Beaudoin, G., Méric, J., Boutroy, E., & Potvin-Doucet, C. (2014). Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49(7), 785–796.

    Article  Google Scholar 

  • Dong, R., Wang, H., Li, W., Yan, Q., & Zhang, X. (2021). The geology, magnetite geochemistry, and oxygen isotopic composition of the Akesayi skarn iron deposit, Western Kunlun Orogenic Belt, Xinjiang, northwest China: Implications for ore genesis. Ore Geology Reviews, 130, 103854.

    Article  Google Scholar 

  • Du, X., Zhou, K., Cui, Y., Wang, J., & Zhou, S. (2021). Mapping mineral prospectivity using a hybrid genetic algorithm-support vector machine (GA–SVM) model. ISPRS International Journal of Geo-Information, 10(11), 766.

    Article  Google Scholar 

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (p. 654). John Wiley.

    Google Scholar 

  • Duparc, Q., Dare, S. A. S., Cousineau, P. A., & Goutier, J. (2016). Magnetite chemistry as a provenance indicator in archean metamorphosed sedimentary rocks. Journal of Sedimentary Research, 86(5), 542–563.

    Article  Google Scholar 

  • Dupuis, C., & Beaudoin, G. (2011). Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4), 319–335.

    Article  Google Scholar 

  • Duran, C. J., Barnes, S., Mansur, E. T., Dare, S. A. S., Bédard, L. P., & Sluzhenikin, S. F. (2020). Magnetite chemistry by LA-ICP-MS records Sulfide fractional crystallization in massive nickel-copper-platinum group element ores from the norilsk-Talnakh Mining District (Siberia, Russia): Implications for trace element partitioning into magnetite. Economic Geology, 115(6), 1245–1266.

    Article  Google Scholar 

  • Ge, C., Han, F., Zou, T., & Chen, D., (1981). Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin. Bulletin Chiness Academy of Geological Sciences, pp. 49–71

  • Ge, W., Cheng, Q., Jing, L., Armenakis, C., & Ding, H. (2018a). Lithological discrimination using ASTER and Sentinel-2A in the Shibanjing ophiolite complex of Beishan orogenic in Inner Mongolia China. Advances in Space Research, 62(7), 1702–1716.

    Article  Google Scholar 

  • Ge, W., Cheng, Q., Tang, Y., Jing, L., & Gao, C. (2018b). Lithological classification using sentinel-2A data in the Shibanjing ophiolite complex in inner Mongolia China. Remote Sensing, 10(4), 638.

    Article  Google Scholar 

  • Ge, Y., Zhang, Z., Cheng, Q., & Wu, G. (2022). Geological mapping of basalt using stream sediment geochemical data: Case study of covered areas in Jining, Inner Mongolia China. Journal of Geochemical Exploration, 232, 106888.

    Article  Google Scholar 

  • Gregory, D. D., Cracknell, M. J., Large, R. R., Mcgoldrick, P., Kuhn, S., Maslennikov, V. V., Baker, M. J., Fox, N., Belousov, I., Figueroa, M. C., Steadman, J. A., Fabris, A. J., & Lyons, T. W. (2019). Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Economic Geology, 114(4), 771–786.

    Article  Google Scholar 

  • Han, F., & Ge, C. H. (1983). Makeng iron deposit—A submarine volcanic hydrothermal-sedimentary ore. Scientia Sinica Series B-Chemical Biological Agricultural Medical & Earth Sciences, 26(10), 1075–1087.

    Google Scholar 

  • Harris, J. R., Grunsky, E., Behnia, P., & Corrigan, D. (2015). Data- and knowledge-driven mineral prospectivity maps for Canada’s North. Ore Geology Reviews, 71, 788–803.

    Article  Google Scholar 

  • Hong, S., Zuo, R., Hu, H., Xiong, Y., & Wang, Z. (2021a). Construction of magnetite geochemical big data and its application in genetic classification of ore deposits. Geoscience Frontiers, 28(03), 87–96.

    Google Scholar 

  • Hong, S., Zuo, R., Huang, X., & Xiong, Y. (2021b). Distinguishing IOCG and IOA deposits via random forest algorithm based on magnetite composition. Journal of Geochemical Exploration, 230, 106859.

    Article  Google Scholar 

  • Hsu, C., Chang, C., & Lin, C., (2003). A practical guide to support vector classication. Technical Report, Department of Computer Science and Information Engineering, University of National Taiwan, Taipei, 1–12.

  • Huang, X., Boutroy, É., Makvandi, S., Beaudoin, G., Corriveau, L., & De Toni, A. F. (2019a). Trace element composition of iron oxides from IOCG and IOA deposits: Relationship to hydrothermal alteration and deposit subtypes. Mineralium Deposita, 54(4), 525–552.

    Article  Google Scholar 

  • Huang, X., Sappin, A., Boutroy, É., Beaudoin, G., & Makvandi, S. (2019b). Trace element composition of igneous and hydrothermal magnetite from porphyry deposits: Relationship to deposit subtypes and magmatic affinity. Economic Geology, 114(5), 917–952.

    Article  Google Scholar 

  • Iglesias, C., Antunes, I. M. H. R., Albuquerque, M. T. D., Martínez, J., & Taboada, J. (2020). Predicting ore content throughout a machine learning procedure—An Sn-W enrichment case study. Journal of Geochemical Exploration, 208, 106405.

    Article  Google Scholar 

  • Knipping, J. L., Bilenker, L. D., Simon, A. C., Reich, M., Barra, F., Deditius, A. P., Wälle, M., Heinrich, C. A., Holtz, F., & Munizaga, R. (2015). Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochimica Et Cosmochimica Acta, 171, 15–38.

    Article  Google Scholar 

  • Lin, N., Chen, Y., Liu, H., & Liu, H. (2021). A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity. Minerals, 11(2), 159.

    Article  Google Scholar 

  • Lin, Z. (2008). Discussion on geological features and prospecting direction of Makeng Iron Deposit. Experess Information of Mining Industry, 10, 84–86. in Chinese.

    Google Scholar 

  • Lindsley, D.H., (1976). The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. Oxide Minerals, L1-L60.

  • Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., & Chen, H. (2008). In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1–2), 34–43.

    Article  Google Scholar 

  • Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., & Chen, H. (2010). Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15), 1535–1546.

    Article  Google Scholar 

  • Liu, Y., Wang, X., Li, L., Cheng, S., & Chen, Z. (2019). A novel lane change decision-making model of autonomous vehicle based on support vector machine. IEEE Access, 7, 26543–26550.

    Article  Google Scholar 

  • Makvandi, S., Ghasemzadeh-Barvarz, M., Beaudoin, G., Grunsky, E. C., McClenaghan, M. B., Duchesne, C., & Boutroy, E. (2016). Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: Application to mineral exploration. Ore Geology Reviews, 78, 388–408.

    Article  Google Scholar 

  • Manaf, S. A., Mustapha, N., Sulaiman, N., Husin, N. A., Radzi, M., & Hamid, A. (2018). Artificial neural networks for satellite image classification of shoreline extraction for land and water classes of the north west coast of peninsular Malaysia. Advanced Science Letters, 24(2), 1382–1387.

    Article  Google Scholar 

  • Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., & Hamprecht, F. A. (2009). A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics, 10(1), 213.

    Article  Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. Isprs Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  • Nadoll, P., (2011). Geochemistry of magnetite from hydrothermal ore deposits and host rocks—Case studies from the Proterozoic Belt Supergroup, Cu-Mo-porphyry + skarn and Climax-Mo deposits in the western United States, vol PhD. The University of Auckland.

  • Nadoll, P., Angerer, T., Mauk, J. L., French, D., & Walshe, J. (2014). The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1–32.

    Article  Google Scholar 

  • Nadoll, P., Mauk, J. L., Leveille, R. A., & Koenig, A. E. (2015). Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineralium Deposita, 50(4), 493–515.

    Article  Google Scholar 

  • Nathwani, C.L., Wilkinson, J.J., Fry, G., Armstrong, R.N., Smith, D.J., & Ihlenfeld, C., (2022). Machine learning for geochemical exploration: Classifying metallogenic fertility in arc magmas and insights into porphyry copper deposit formation. Mineralium Deposita.

  • Parsa, M., & Maghsoudi, A. (2021). Assessing the effects of mineral systems-derived exploration targeting criteria for random Forests-based predictive mapping of mineral prospectivity in Ahar-Arasbaran area Iran. Ore Geology Reviews, 138, 104399.

    Article  Google Scholar 

  • Peterson, L. E. (2011). Covariance matrix self-adaptation evolution strategies and other metaheuristic techniques for neural adaptive learning. Soft Computing, 15(8), 1483–1495.

    Article  Google Scholar 

  • Petrelli, M., Caricchi, L., & Perugini, D. (2020). Machine learning thermo-barometry: Application to Clinopyroxene-bearing magmas. Journal of Geophysical Research: Solid Earth, 125(9), e2020J-e20130J.

    Google Scholar 

  • Pisiak, L. K., Canil, D., Lacourse, T., Plouffe, A., & Ferbey, T. (2017). Magnetite as an indicator mineral in the exploration of porphyry deposits: A case study in till near the mount polley Cu-Au Deposit, British Columbia Canada. Economic Geology, 112(4), 919–940.

    Article  Google Scholar 

  • Richards, J.A., (2013). Remote Sensing Digital Image Analysis: An Introduction. Springer; 5th edition, pp. 292–294.

  • Sarparandeh, M., & Hezarkhani, A. (2017). Studying distribution of rare earth elements by classifiers, Se-Chahun iron ore Central Iran. Acta Geochimica, 36(2), 232–239.

    Article  Google Scholar 

  • Sievwright, R.H., (2017). Developing magnetite chemistry as an exploration tool for porphyry copper deposits, vol PhD. Imperial College London.

  • Skarmeta, J. (2020). Structural controls on alteration stages at the Chuquicamata copper-molybdenum deposit northern Chile. Economic Geology, 116(1), 1–28.

    Article  Google Scholar 

  • Sun, T., Chen, F., Zhong, L., Liu, W., & Wang, Y. (2019a). GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geology Reviews, 109, 26–49.

    Article  Google Scholar 

  • Sun, W., Yuan, F., Jowitt, S. M., Zhou, T., Liu, G., Li, X., Wang, F., & Troll, V. R. (2019b). In situ LA–ICP–MS trace element analyses of magnetite: Genetic implications for the Zhonggu orefield, Ningwu volcanic basin, Anhui Province China. Mineralium Deposita, 54(8), 1243–1264.

    Article  Google Scholar 

  • Sun, X., Lin, H., Fu, Y., Li, D., Hollings, P., Yang, T., & Liu, Z. (2017). Trace element geochemistry of magnetite from the giant Beiya gold-polymetallic deposit in Yunnan Province, Southwest China and its implications for the ore forming processes. Ore Geology Reviews, 91, 477–490.

    Article  Google Scholar 

  • Sun, Z., Wang, Y., & Long, L. (2020). In-situ LA-ICP-MS trace element and oxygen isotope signatures of magnetite from the Yamansu deposit, NW China, and their significance. Acta Geochimica, 39(5), 599–615.

    Article  Google Scholar 

  • Tang, D., Qin, K., Mao, Y., & Evans, N. J. (2022). Magnetite geochemistry and iron isotope signature of disseminated and massive mineralization in the Kalatongke magmatic CuNi sulfide deposit, northwest China. Chemical Geology, 605, 120965.

    Article  Google Scholar 

  • Tian, J., Zhang, Y., Gong, L., Francisco, D. G., & Emil Berador, A. (2021). Genesis, geochemical evolution and metallogenic implications of magnetite: Perspective from the giant Cretaceous Atlas porphyry Cu–Au deposit (Cebu, Philippines). Ore Geology Reviews, 133, 104084.

    Article  Google Scholar 

  • Toplis, M. J., & Carroll, M. R. (1995). An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. Journal of Petrology, 36, 1137–1170.

    Article  Google Scholar 

  • Toplis, M. J., & Corgne, A. (2002). An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144(1), 22–37.

    Article  Google Scholar 

  • Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., & Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520–525.

    Article  Google Scholar 

  • Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44(2), 330–349.

    Article  Google Scholar 

  • Wang, C., Pan, Y., Chen, J., Ouyang, Y., Rao, J., & Jiang, Q. (2020a). Indicator element selection and geochemical anomaly mapping using recursive feature elimination and random forest methods in the Jingdezhen region of Jiangxi Province South China. Applied Geochemistry, 122, 104760.

    Article  Google Scholar 

  • Wang, J., Zuo, R., & Xiong, Y. (2020b). Mapping mineral Prospectivity via semi-supervised random forest. Natural Resources Research, 29(1), 189–202.

    Article  Google Scholar 

  • Wang, Y., Qiu, K., Müller, A., Hou, Z., Zhu, Z., & Yu, H. (2021a). Machine learning prediction of quartz forming-environments. Journal of Geophysical Research: Solid Earth, 126(8), e2021J-e21925J.

    Google Scholar 

  • Wang, Z., Zuo, R., & Jing, L. (2021b). Fusion of geochemical and remote-sensing data for lithological mapping using random forest metric learning. Mathematical Geosciences, 53(6), 1125–1145.

    Article  Google Scholar 

  • Wechsler, B. A., Lindsley, D. H., & Prewitt, C. T. (1984). Crystal-structure and cation distribution in titanomagnetites (Fe3-xTixo4). American Mineralogist, 69(7–8), 754–770.

    Google Scholar 

  • Xing, B., Mao, J., Xiao, X., Liu, H., Yu, L., Li, H., Guo, S., Li, H., & Huang, W. (2022). Genesis of the Dingjiashan and Fengyan Zn-Pb polymetallic deposits in central Fujian, SE China: Evidence from magnetite geochemistry. Ore Geology Reviews, 144, 104851.

    Article  Google Scholar 

  • Yan, Z., Chen, D., Teng, Z., Wang, D., & Li, Y. (2020). SMOPredT4SE: An effective prediction of bacterial Type IV secreted effectors using SVM training with SMO. IEEE Access, 8, 25570–25578.

    Article  Google Scholar 

  • Yang, Y. L., Ni, P., Pan, J. Y., Ding, J. Y., & Wang, Q. (2020a). Episodic fluid evolution in the formation of the large scale Luoyang Fe deposit, Fujian, eastern China. Ore Geology Reviews, 120, 103412.

    Article  Google Scholar 

  • Yang, Y., Ni, P., Pan, J., Wang, G., & Xu, Y. (2017). Constraints on the mineralization processes of the Makeng iron deposit, eastern China: Fluid inclusion, H-O isotope and magnetite trace element analysis. Ore Geology Reviews, 88, 791–808.

    Article  Google Scholar 

  • Yang, Y., Ni, P., Wang, Q., Wang, J., & Zhang, X. (2020b). In situ LA-ICP-MS study of garnets in the Makeng Fe skarn deposit, eastern China: Fluctuating fluid flow, ore-forming conditions and implication for mineral exploration. Ore Geology Reviews, 126, 103725.

    Article  Google Scholar 

  • Zhang, C., (2012). Geology and Geochemistry of Makeng Fe–Mo Deposit, Fujian, vol PhD. China University of Geosciences (Beijing), p. 188 (in Chinese with English Abstract).

  • Zhang, C., Mao, J., Xie, G., Zhao, C., Yu, M., Wang, J., & Liu, W. (2012). Geology and molybdenite Re-Os ages of Makeng Skarn-type Fe–Mo Deposit in Fujian Province. Journal of Jilin University (Earth Science Edition), 42(S1), 224–236.

    Google Scholar 

  • Zhang, Z., Cheng, Q., Yang, J., & Hu, X. (2018). Characterization and origin of granites from the Luoyang Fe deposit, southwestern Fujian Province, South China. Journal of Geochemical Exploration, 184, 119–135.

    Article  Google Scholar 

  • Zhang, Z., & Zuo, R. (2014). Sr–Nd–Pb isotope systematics of magnetite: Implications for the genesis of Makeng Fe deposit, southern China. Ore Geology Reviews, 57, 53–60.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Cheng, Q. (2015a). Geological Features and Formation Processes of the Makeng Fe Deposit China. Resource Geology, 65(3), 266–284.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Cheng, Q. (2015b). The mineralization age of the Makeng Fe deposit, South China: Implications from U-Pb and Sm–Nd geochronology. International Journal of Earth Sciences, 104(3), 663–682.

    Article  Google Scholar 

  • Zhang, Z., Zuo, R., & Xiong, Y. (2016). A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt China. Science China Earth Sciences, 59(3), 556–572.

    Article  Google Scholar 

  • Zhao, X., Li, L., Xu, M., Liu, H., Zhu, Q., Jin, G., & Jiang, Y. (2021). Control of basement on Paleozoic mineralizations in the Wuyi metallogenic belt. Ore Geology Reviews, 131, 104037.

    Article  Google Scholar 

  • Zhao, X., Zhang, Y., Jiang, Y., & Li, L. (2020). Determining the origin of the Makeng Fe deposit, Fujian Province China. Journal of Geochemical Exploration, 213, 106523.

    Article  Google Scholar 

  • Zhao, Y., Zhang, Y., Geng, M., Jiang, J., & Zou, X. (2019). Involvement of Slab-Derived Fluid in the Generation of Cenozoic Basalts in Northeast China Inferred From Machine Learning. Geophysical Research Letters, 46(10), 5234–5242.

    Article  Google Scholar 

  • Zhong, R., Deng, Y., Li, W., Danyushevsky, L. V., Cracknell, M. J., Belousov, I., Chen, Y., & Li, L. (2021). Revealing the multi-stage ore-forming history of a mineral deposit using pyrite geochemistry and machine learning-based data interpretation. Ore Geology Reviews, 133, 104079.

    Article  Google Scholar 

  • Zhou, Z., (2016). Machine Learning. Beijing: Tsinghua University Press, pp. 121–123 (in Chinese).

  • Zhou, L., & Yang, X. (2011). An assessment of internal neural network parameters affecting image classification accuracy. Photogrammetric Engineering and Remote Sensing, 12(8), 1233–1240.

    Article  Google Scholar 

  • Zuo, R., & Carranza, E. J. M. (2011). Support vector machine: A tool for mapping mineral prospectivity. Computers & Geosciences, 37(12), 1967–1975.

    Article  Google Scholar 

  • Zuo, R., Xia, Q., Zhang, D., & Cheng, Q. (2012). Geological process-based mineral resource quantitative prediction and assessment for Makeng-Type Iron Polymetallic Deposits in Fujian. Earth Science (Journal of China University of Geosciences), 37(06), 1183–1190.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers 42050103 and 41702075], the National Key R&D Program of China [grant number 2018YFE0204204], and the Fundamental Research Funds for the Central Universities [grant number 2652018132].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenjie Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, Z., Yang, J. et al. Machine Learning Prediction of Ore Deposit Genetic Type Using Magnetite Geochemistry. Nat Resour Res 32, 99–116 (2023). https://doi.org/10.1007/s11053-022-10146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10146-4

Keywords

Navigation