Skip to main content
Log in

Microstructure Evolution of Bituminous Coal Modified by High-Pressure CO2 Foam Fracturing Fluid with Different Treatment Times

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The microstructure of bituminous coal can be changed significantly due to injection of CO2 foam fracturing fluid into the coal seam, affecting CBM production efficiency. To investigate the microstructural change characteristics of bituminous coal treated with high-pressure CO2 foam fracturing fluid at different treatment times (0–24 h), medium-rank bituminous coal was selected as the research object. X-ray diffraction, Fourier transform infrared spectroscopy, and low-temperature N2 adsorption tests were carried out to study the changes in mineral components, functional groups, micropore structure, respectively. It was found that the pore structure of bituminous coal can be changed by CO2 foam fracturing fluid. With increase in modification time, the proportion of macropore (> 50 nm) volume of bituminous coal increased gradually, while the proportion of pore (2–5 nm) volume showed a trend of “increase rapidly–decrease rapidly–decrease slowly.” When the modification time was within 6–24 h, the average pore size showed a quadratic polynomial positive correlation with treatment time, the seepage pore fractal dimension (D1) decreased linearly with increase in modification time, and the adsorption pore fractal dimension (D2) showed the opposite trend. Moreover, with increase in modification time, the infrared peak area of oxygen-containing functional groups and aromatic, aliphatic, and hydroxyl structures of bituminous coal showed a trend of “decrease rapidly–decrease slowly,” the aromaticity and degree of aromatic ring condensation showed “decreasing–increasing–decreasing” trends, and the aliphatic chain length and oxygen-containing functional groups fluctuated and increased. CO2 foam fracturing fluids significantly dissolve clay and carbonate minerals in bituminous coal. Coal microstructure can be changed by CO2 foam fracturing fluid through hydrocarbon extraction and transport, differential swelling, and mineral dissolution. The findings showed that 18–24 h was the optimal time range for fracturing fluid flowback after performing CO2 foam fracturing measurements. The research results are significant for selecting CO2 foam fracturing fluid flowback time and improving CBM recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • An, W., & Wang, L. (2020). Mechanical properties and modification of coal under the action of surfactant. Meitan Xuebao/Journal of the China Coal Society, 45(12), 4074–4086.

    Google Scholar 

  • Chen, K., Liu, X., Nie, B., Zhang, C., Song, D., Wang, L., & Yang, T. (2022). Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2. Energy, 248.

  • Cheng, Y., & Pan, Z. (2020). Reservoir properties of Chinese tectonic coal: A review. Fuel, 260, 116350.

    Article  Google Scholar 

  • Cong, Z., Li, Y., Pan, Y., Liu, B., Shi, Y., Wei, J., & Li, W. (2022). Study on CO2 foam fracturing model and fracture propagation simulation. Energy, 238, 121778.

    Article  Google Scholar 

  • Dong, K., Dai, W.-X., Zhong, D.-L., Yan, J., Xie, F.-M., Sun, H.-S., & Wang, M. (2022). Experimental study on coal structure variation and CH4 adsorption properties under the effect of cocamidopropyl betaine. Energy & Fuels, 36(23), 14055–14065.

    Article  Google Scholar 

  • Durucan, S., Ahsanb, M., & Shia, J.-Q. (2009). Matrix shrinkage and swelling characteristics of European coals. Energy Procedia, 1(1), 3055–3062.

    Article  Google Scholar 

  • Flores, R. M. (1998). Coalbed methane: From hazard to resource. International Journal of Coal Geology, 35(1–4), 3–26.

    Article  Google Scholar 

  • Geng, M., Chen, H., Chen, Y., Zeng, L., Chen, S., & Jiang, X. (2018). Methods and results of the fourth round national CBM resources evaluation. Coal Science and Technology, 46(6), 64–68.

    Google Scholar 

  • Guo, Z., Cao, Y., Zhang, Z., & Dong, S. (2022). Geological controls on the gas content and permeability of coal reservoirs in the Daning block, Southern Qinshui Basin. ACS Omega, 7(20), 17063–17074.

    Article  Google Scholar 

  • Han, W., Zhou, G., Gao, D., Zhang, Z., Wei, Z., Wang, H., & Yang, H. (2020). Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technology, 362, 386–398.

    Article  Google Scholar 

  • Li, H., Shi, S., Lin, B., Lu, J., Ye, Q., Lu, Y., Wang, Z., Hong, Y., & Zhu, X. (2019). Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals. Energy, 187, 115986.

    Article  Google Scholar 

  • Li, N., Yu, J., Wang, C., Zhang, S., Liu, X., Kang, J., Wang, Y., & Dai, Y. (2021a). Fracturing technology with carbon dioxide: A review. Journal of Petroleum Science and Engineering, 205, 108793.

    Article  Google Scholar 

  • Li, P., Zhang, X., & Zhang, S. (2018). Structures and fractal characteristics of pores in low volatile bituminous deformed coals by low-temperature N2 adsorption after different solvents treatments. Fuel, 224, 661–675.

    Article  Google Scholar 

  • Li, R., Ge, Z., Wang, Z., Zhou, Z., Zhou, J., & Li, C. (2022). Effect of supercritical carbon dioxide (ScCO2) on the microstructure of bituminous coal with different moisture contents in the process of ScCO2 enhanced coalbed methane and CO2 geological sequestration. Energy & Fuels, 36(7), 3680–3694.

    Article  Google Scholar 

  • Li, X., Chen, S., Wang, S., Zhao, M., & Liu, H. (2021b). Study on in situ stress distribution law of the deep mine: Taking Linyi mining area as an example. Advances in Materials Science and Engineering, 2021, 5594181.

    Google Scholar 

  • Liang, W., He, W., & Yan, J. (2022). Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2. Meitan Xuebao/Journal of the China Coal Society, 47(7), 2557–2568.

    Google Scholar 

  • Liu, C. J., Wang, G. X., Sang, S. X., Gilani, W., & Rudolph, V. (2015). Fractal analysis in pore structure of coal under conditions of CO2 sequestration process. Fuel, 139, 125–132.

    Article  Google Scholar 

  • Liu, N., Sun, L., Qin, B., Zhang, S., & Du, W. (2021). Evolution of pore and fracture of coal under heating–freezing effects: An experimental study. Fuel, 306, 121618.

    Article  Google Scholar 

  • Liu, S., Li, X., Wang, D., & Zhang, D. (2020). Investigations on the mechanism of the microstructural evolution of different coal ranks under liquid nitrogen cold soaking. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1841856

    Article  Google Scholar 

  • Liu, S., Ma, J., Sang, S., Wang, T., Du, Y., & Fang, H. (2018). The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal. Fuel, 223, 32–43.

    Article  Google Scholar 

  • Liu, Y., Lebedev, M., Zhang, Y., Wang, E., Li, W., Liang, J., Feng, R., & Ma, R. (2022). Micro-cleat and permeability evolution of anisotropic coal during directional CO2 flooding: An in situ micro-CT study. Natural Resources Research, 31(5), 2805–2818.

    Article  Google Scholar 

  • Lu, Y., Yang, F., Ge, Z., Wang, Q., & Wang, S. (2017). Influence of viscoelastic surfactant fracturing fluid on permeability of coal seams. Fuel, 194, 1–6.

    Article  Google Scholar 

  • Masoudian, M. S., Airey, D. W., & El-Zein, A. (2014). Experimental investigations on the effect of CO2 on mechanics of coal. International Journal of Coal Geology, 128–129, 12–23.

    Article  Google Scholar 

  • Mazzotti, M., Pini, R., & Storti, G. (2009). Enhanced coalbed methane recovery. The Journal of Supercritical Fluids, 47(3), 619–627.

    Article  Google Scholar 

  • Meng, M., & Qiu, Z. (2018). Experiment study of mechanical properties and microstructures of bituminous coals influenced by supercritical carbon dioxide. Fuel, 219, 223–238.

    Article  Google Scholar 

  • Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge University Press.

    Google Scholar 

  • Mukherjee, M., & Misra, S. (2018). A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration. Earth-Science Reviews, 179, 392–410.

    Article  Google Scholar 

  • Ni, G., Li, Z., & Xie, H. (2018). The mechanism and relief method of the coal seam water blocking effect (WBE) based on the surfactants. Powder Technology, 323, 60–68.

    Article  Google Scholar 

  • Ni, G., Sun, Q., Xun, M., Wang, H., Xu, Y., Cheng, W., & Wang, G. (2019a). Effect of NaCl-SDS compound solution on the wettability and functional groups of coal. Fuel, 257, 116077.

    Article  Google Scholar 

  • Ni, G., Xie, H., Li, S., Sun, Q., Huang, D., Cheng, Y., & Wang, N. (2019b). The effect of anionic surfactant (SDS) on pore-fracture evolution of acidified coal and its significance for coalbed methane extraction. Advanced Powder Technology, 30(5), 940–951.

    Article  Google Scholar 

  • Ozdemir, E. (2009). Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams. International Journal of Coal Geology, 77(1–2), 145–152.

    Article  Google Scholar 

  • Perera, M. S. A., Ranjith, P. G., Choi, S. K., & Airey, D. (2011a). The effects of sub-critical and super-critical carbon dioxide adsorption-induced coal matrix swelling on the permeability of naturally fractured black coal. Energy, 36(11), 6442–6450.

    Article  Google Scholar 

  • Perera, M. S. A., Ranjith, P. G., & Peter, M. (2011b). Effects of saturation medium and pressure on strength parameters of Latrobe Valley brown coal: Carbon dioxide, water and nitrogen saturations. Energy, 36(12), 6941–6947.

    Article  Google Scholar 

  • Qin, L., Wang, P., Zhai, C., Li, S., Lin, H., & Long, H. (2022). Research on fractal characteristics of coal freezing with low temperature liquid nitrogen based on nitrogen adsorption method and mercury intrusion method. Journal of Mining & Safety Engineering.

  • Qin, L., Li, S., Zhai, C., Lin, H., Zhao, P., Shi, Y., & Bai, Y. (2020). Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion. Fuel, 267, 117214.

    Article  Google Scholar 

  • Sampath, K. H. S. M., Perera, M. S. A., Ranjith, P. G., Matthai, S. K., Rathnaweera, T., Zhang, G., & Tao, X. (2017). CH4-CO2 gas exchange and supercritical CO2 based hydraulic fracturing as CBM production-accelerating techniques: A review. Journal of CO2 Utilization, 22, 212–230.

    Article  Google Scholar 

  • Song, H., Du, S., Yang, J., Zhao, Y., & Yu, M. (2022). Evaluation of hydraulic fracturing effect on coalbed methane reservoir based on deep learning method considering physical constraints. Journal of Petroleum Science and Engineering, 212, 110360.

    Article  Google Scholar 

  • Song, Y., Zou, Q., Su, E., Zhang, Y., & Sun, Y. (2020). Changes in the microstructure of low-rank coal after supercritical CO2 and water treatment. Fuel, 279, 118493.

    Article  Google Scholar 

  • Su, E., Liang, Y., & Zou, Q. (2021). Structures and fractal characteristics of pores in long-flame coal after cyclical supercritical CO2 treatment. Fuel, 286, 119305.

    Article  Google Scholar 

  • Sun, Y., Zhai, C., Xu, J., Yu, X., Cong, Y., Zheng, Y., Tang, W., & Li, Y. (2022). Damage and failure of hot dry rock under cyclic liquid nitrogen cold shock treatment: a non-destructive ultrasonic test method. Natural Resources Research, 31(1), 261–279.

    Article  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069.

    Article  Google Scholar 

  • Volpe, P. L. O., & Filho, E. A. S. (1995). Calorimetric study of SDS micelle formation in water and in NaCl solution at 298 K. Thermochimica Acta, 257, 59–66.

    Article  Google Scholar 

  • Wamock, W. E., Jr., Harris, P. C., & King, D. S. (1985). Successful field applications of CO2-foam fracturing fluids in the Arkansas-Louisiana-Texas region. Journal of Petroleum Technology, 37(01), 80–88.

    Article  Google Scholar 

  • Wang, K., Xu, T., Wang, F., & Tian, H. (2016). Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams. International Journal of Coal Geology, 154–155, 265–274.

    Article  Google Scholar 

  • Wang, X., Liu, H., Zhang, D., Yuan, X., Zeng, P., & Zhang, H. (2022a). Effects of CO2 adsorption on molecular structure characteristics of coal: Implications for CO2 geological sequestration. Fuel, 321, 124155.

    Article  Google Scholar 

  • Wang, Z., Ge, Z., Li, R., Liu, X., Wang, H., & Gong, S. (2022b). Effects of acid-based fracturing fluids with variable hydrochloric acid contents on the microstructure of bituminous coal: An experimental study. Energy, 244, 122621.

    Article  Google Scholar 

  • Wanniarachchi, W. A. M., Ranjith, P. G., & Perera, M. S. A. (2017). Shale gas fracturing using foam-based fracturing fluid: A review. Environmental Earth Sciences, 76(2), 91.

    Article  Google Scholar 

  • Xie, H., Ni, G., Xie, J., Cheng, W., Xun, M., Xu, Y., Wang, H., & Wang, G. (2020). The effect of SDS synergistic composite acidification onthechemical structure and wetting characteristics of coal. Powder Technology, 367, 253–265.

    Article  Google Scholar 

  • Xu, F., Xiao, Z., Chen, D., Yan, X., Wu, N., Li, X., & Miao, Y. (2019). Current status and development direction of coalbed methane exploration technology in China. Coal Science and Technology, 47(10), 205–215.

    Google Scholar 

  • Zhang, G., Ranjith, P. G., Fu, X., & Li, X. (2021a). Pore-fracture alteration of different rank coals: Implications for CO2 sequestration in coal. Fuel, 289, 119801.

    Article  Google Scholar 

  • Zhang, G., Ranjith, P. G., Li, Z., Gao, M., & Ma, Z. (2021b). Long-term effects of CO2-water-coal interactions on structural and mechanical changes of bituminous coal. Journal of Petroleum Science and Engineering, 207, 109093.

    Article  Google Scholar 

  • Zhang, G., Ranjith, P. G., & Lyu, Q. (2022). Direct evidence of CO2 softening effects on coal using nanoindentation. Energy, 254, 124221.

    Article  Google Scholar 

  • Zhang, G., Ranjith, P. G., Wu, B., Perera, M. S. A., Haque, A., & Li, D. (2019a). Synchrotron X-ray tomographic characterization of microstructural evolution in coal due to supercritical CO2 injection at in-situ conditions. Fuel, 255, 115696.

    Article  Google Scholar 

  • Zhang, K., Cheng, Y., Li, W., Wu, D., & Liu, Z. (2017). Influence of supercritical CO2 on pore structure and functional groups of coal: Implications for CO2 sequestration. Journal of Natural Gas Science and Engineering, 40, 288–298.

    Article  Google Scholar 

  • Zhang, Y., Lebedev, M., Jing, Y., Yu, H., & Iglauer, S. (2019b). In-situ X-ray micro-computed tomography imaging of the microstructural changes in water-bearing medium rank coal by supercritical CO2 flooding. International Journal of Coal Geology, 203, 28–35.

    Article  Google Scholar 

  • Zhang, Y., Lebedev, M., Sarmadivaleh, M., Barifcani, A., & Iglauer, S. (2016a). Swelling-induced changes in coal microstructure due to supercritical CO2 injection. Geophysical Research Letters, 43(17), 9077–9083.

    Article  Google Scholar 

  • Zhang, Y., Lebedev, M., Sarmadivaleh, M., Barifcani, A., Rahman, T., & Iglauer, S. (2016b). Swelling effect on coal micro structure and associated permeability reduction. Fuel, 182, 568–576.

    Article  Google Scholar 

  • Zhao, W., Su, X., Xia, D., Hou, S., Wang, Q., & Zhou, Y. (2022). Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion. Energy, 259, 124914.

    Article  Google Scholar 

  • Zheng, Y., Zhai, C., Chen, A., Yu, X., Xu, J., Sun, Y., Cong, Y., Tang, W., Zhu, X., & Li, Y. (2023). Microstructure evolution of bituminite and anthracite modified by different fracturing fluids. Energy, 263, 125732.

    Article  Google Scholar 

  • Zheng, Y., Zhai, C., Sun, Y., Xu, J., Cong, Y., Tang, W., & Chen, A. (2021). Experimental study on the effect of coal particle size on the mechanics, pore structure, and permeability of coal-like materials for low-rank coalbed methane reservoir simulation. Energy & Fuels, 35(21), 17566–17579.

    Article  Google Scholar 

  • Zheng, Y., Zhai, C., Zhang, J., Yu, X., Xu, J., Sun, Y., Cong, Y., & Tang, W. (2022). Deformation and fracture behavior of strong–weak coupling structure and its application in coal roadway instability prevention. Fatigue & Fracture of Engineering Materials & Structures, 45(1), 203–221.

    Article  Google Scholar 

  • Zhou, C., Peng, H., Sang, Y., Ran, L., Liu, L., & Li, S. (2016). CO2 foam fracturing technology in shale gas development. Natural Gas Industry, 36(10), 70–76.

    Google Scholar 

  • Zhou, J., Yang, K., Tian, S., Zhou, L., Xian, X., Jiang, Y., Liu, M., & Cai, J. (2020). CO2-water-shale interaction induced shale microstructural alteration. Fuel, 263, 116642.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51774278, 52104228, and 52104233), the National Science Foundation for Distinguished Young Scholars of China (51925404), China Postdoctoral Science Foundation (2021M693409), the Fundamental Research Funds for the Central Universities (2021QN1090 and 2021QN1091), the Graduate Innovation Program of China University of Mining and Technology (2022WLKXJ024), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2654).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhai.

Ethics declarations

Conflict of Interest

The author declares that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhai, C., Chen, A. et al. Microstructure Evolution of Bituminous Coal Modified by High-Pressure CO2 Foam Fracturing Fluid with Different Treatment Times. Nat Resour Res 32, 1319–1338 (2023). https://doi.org/10.1007/s11053-023-10179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-023-10179-3

Keywords

Navigation