Skip to main content
Log in

Inhomogeneous Rostrocaudal Activation of the Hippocampus in Mice after Exploration of a Novel Space

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Hippocampal activity in C57BL/6 mice was studied during exploration of novel spaces of different levels of complexity and learning by neuromapping using the induction of c-Fos protein by nervous activity. c-Fos-immunopositive neurons were counted at eight levels along the whole of the rostrocaudal axis of the hippocampus. In experiment 1, mice were given six opportunities on a single day to find the entrance to the home cage through one of the arms of a modified eight-arm radial maze. Animals of the active control group were released into the home cage via an isolated arm. Mice tested in the eight-arm maze showed an inhomogeneous increase in c-Fos expression along the rostrocaudal axis: activation in the caudal part of fields CA1 and CA3 and the dentate fascia was significantly greater than that in the rostral part. In experiment 2, animals were tested in a novel open field. In this situation, the increase in expression in the caudal part of field CA1 was greater than that in the rostral part, though in field CA3 and the dentate fascia there was uniform activation over the whole rostrocaudal extent. Both experiments identified positive correlations between the density of c-Fos-positive neurons and measures of investigative activity. These data provide evidence that placing of animals in a novel space leads to inhomogeneous activation of the hippocampal field along its rostrocaudal axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. V. Anokhin, “Molecular Genetic Bases of the Systems Genesis of Behavioral Acts,” in: The Systems Genesis Theory [in Russian], K. V. Sudakov (ed.), Gorizdat, Moscow (1997), pp. 215–276.

    Google Scholar 

  2. P. A. Kuptsov, M. G. Pleskacheva, D. N. Voronkov, et al., “Characteristics of the expression of the c-Fos gene along the rostrocaudal axis of the hippocampus in common field voles after rapid training to a spatial task,” Zh. Vyssh. Nerv. Deyat., 55, No. 2, 231–240 (2005).

    CAS  Google Scholar 

  3. F. Badowska-Szalewska, I. Klejbor, J. Dziwiatkowski, et al., “The influence of acute and chronic open-field exposure on the hippocampal formation: an immunohistochemical study,” Folia Morphol. (Warsaw), 65, No. 4, 343–351 (2006).

    CAS  Google Scholar 

  4. D. M. Bannerman, J. N. Rawlins, S. B. McHugh, et al., “Regional dissociations within the hippocampus – memory and anxiety,” Neurosci. Biobehav. Rev., 28, No. 3, 273–283 (2004).

    Article  PubMed  CAS  Google Scholar 

  5. T. Bast, “Toward an integrative perspective on hippocampal function: from the rapid encoding of experience to adaptive behavior,” Rev. Neurosci., 18, No. 3–4, 253–281 (2007).

    PubMed  Google Scholar 

  6. T. Bast, I. A. Wilson, M. P. Witter, and R. G. Morris, “From rapid place learning to behavioral performance: a key role for the intermediate hippocampus,” PLoS Biol., 7, No. 4, 0730–0746 (2009).

    Article  CAS  Google Scholar 

  7. C. Belzung, “The genetic basis of the pharmacological effects of anxiolytics: a review based on rodent models,” Behav. Pharmacol., 12, 451–460 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. W. E. Crusio, H. Schwegler, and J. H. van Abeelen, “Behavioral responses to novelty and structural variation of the hippocampus in mice. I. Quantitative-genetic analysis of behavior in the open field,” Behav. Brain Res., 32, 75–80 (1989).

    Article  PubMed  CAS  Google Scholar 

  9. J. Ferbinteanu, C. Ray, and R. J. McDonald, “Both dorsal and ventral hippocampus contribute to spatial learning in Long-Evans rats,” Neurosci. Lett., 345, No. 2, 131–135 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. K. Franklin and G. Paxinos, The Mouse Brain in Stereotaxic Coordinates, Academic Press, San Diego (1997).

    Google Scholar 

  11. J. He, K. Yamada, and T. Nabeshima, “A role of Fos expression in the CA3 region of the hippocampus in spatial memory formation in rats,” Neuropsychopharmacology, 26, 259–268 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. U. S. Hess, G. Lynch, and C. M. Gall, “Regional patterns of c-fos mRNA expression in rat hippocampus following exploration of a novel environment versus performance of a well-learned discrimination,” J. Neurosci., 15, No. 12, 7796–7809 (1995).

    PubMed  CAS  Google Scholar 

  13. R. P. Kesner and M. R. Hunsaker, “The temporal attributes of episodic memory,” Behav. Brain Res., 215, No. 2, 299–309 (2010).

    Article  PubMed  Google Scholar 

  14. K. B. Kjelstrup, T. Solstad, V. H. Brun, et al., “Finite scale of spatial representation in the hippocampus,” Science, 321, No. 5885, 140–143 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. S. Kubik, T. Miyashita, and J. F. Guzowkski, “Using immediateearly genes to map hippocampal subregional functions,” Learn. Mem., 14, No. 11, 758–770 (2007).

    Article  PubMed  Google Scholar 

  16. R. F. Langston, C. H. Stevenson, C. L. Wilson, et al., “The role of hippocampal subregions in memory for stimulus associations,” Behav. Brain Res., 215, No. 2, 275–291 (2010).

    Article  PubMed  Google Scholar 

  17. B. L. McNaughton, C. A. Barnes, J. L. Gerrard, et al., “Deciphering the hippocampal polyglot: the hippocampus as a path integration system,” J. Exp. Biol., 199, No. 1, 173–185 (1996).

    PubMed  CAS  Google Scholar 

  18. F. Mingaud, C. Le Moine, N. Etchamendy, et al., “The hippocampus plays a critical role at encoding discontiguous events for subsequent declarative memory expression in mice,” Hippocampus, 17, No. 4, 264–270 (2007).

    Article  PubMed  Google Scholar 

  19. H. Mittelstaedt, “Triple-loop model of path control by head direction and place cells,” Biol. Cybern., 83, No. 3, 261–270 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. M. B. Moser and E. I. Moser, “Functional differentiation in the hippocampus,” Hippocampus, 8, 608–619 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. T. W. Pace, R. Gaylord, F. Topczewski, et al., “Immediate-early gene induction in hippocampus and cortex as a result of novel experience is not directly related to the stressfulness of that experience,” Eur. J. Neurosci., 22, No. 7, 1679–1690 (2005).

    Article  PubMed  Google Scholar 

  22. M. Pleskacheva, P. Kuptsov, I. Lebedev, et al., “Functional specificity of caudal hippocampus in exploratory behaviour and spatial learning in bank voles,” in: Frontiers in Behavioral Science. Conf. Abstr.: 41st European Brain and Behaviour Society Meeting, doi: 10.3389/conf.neuro.08.2009.09.260 (2009).

  23. H. H. Pothuizen, W. N. Zhang, A. L. Jongen-Rêlo, et al., “Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory,” Eur. J. Neurosci., 19, No. 3, 705–712 (2004).

    Article  PubMed  Google Scholar 

  24. A. Rinaldi, S. Romeo, C. Agustín-Pavón, et al., “Distinct patterns of Fos immunoreactivity in striatum and hippocampus induced by different kinds of novelty in mice,” Neurobiol. Learn. Mem., 94, No. 3, 373–381 (2010).

    Article  PubMed  CAS  Google Scholar 

  25. S. Royer, A. Sirota, J. Patel, and G. Buszáki, “Distinct representations and theta dynamics in dorsal and ventral hippocampus,” J. Neurosci., 30, No. 5, 1777–1787 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. A. Terrazas, M. Krause, P. Lipa, et al., “Self-motion and the hippocampal spatial metric,” J. Neurosci., 25, No. 35, 8085–8096 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. K. Touzani, A. Marighetto, and R. Jaffard, “Fos imaging reveals ageing-related changes in hippocampal relationship to radial maze discrimination testing in mice,” Eur. J. Neurosci., 17, No. 3, 628–640 (2003).

    Article  PubMed  Google Scholar 

  28. S. D. Vann, M. W. Brown, J. T. Erichsen, and J. P. Aggleton, “Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests,” J. Neurosci., 20, 2711–2718 (2000).

    PubMed  CAS  Google Scholar 

  29. D. Wirtshafter, “Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment,” Brain Res., 1051, No. 1–2, 57–65 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. M. P. Witter and D. G. Amaral, “Hippocampal formation,” in: The Rat Nervous System, G. Paxinos (ed.), Elsevier Academic Press, San Diego (2004), pp. 635–704.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Kuptsov.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 62, No. 1, p. 43–55, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuptsov, P.A., Pleskacheva, M.G. & Anokhin, K.V. Inhomogeneous Rostrocaudal Activation of the Hippocampus in Mice after Exploration of a Novel Space. Neurosci Behav Physi 43, 298–307 (2013). https://doi.org/10.1007/s11055-013-9731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-013-9731-2

Keywords

Navigation