Skip to main content
Log in

The Specific Role of Dopamine in the Striatum during Operant Learning

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The role of dopamine in behavior is in a state of permanent controversy. The notion of ‘prediction error’ is a central component in current reward-based models of learning, but there are many caveats and contradictions in the supporting data. In this paper we propose that the same dopamine signal can both promote an action and reinforce it and we outline a novel model of reward-based learning in which dopamine operates as a teaching signal with DA release starting well before and persisting beyond the action being reinforced. The post-response signal providing the true excitatory drive for long-term potentiation (LTP) comes from the intralaminar nuclei of the thalamus. The main component of this hypothetical mechanism is the direct striatal projection neuron pathway, while there are indications that the indirect pathway is fundamentally able to modulate the direct pathway, thus providing behavioral flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeler, J. A., “Thorndike’s Law 2.0: Dopamine and the regulation of thrift,” Front. Neurosci., 6, 116 (2012), Doi: 10.3389/fnins.2012. 00116.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Berridge, K. C., “The debate over dopamine’s role in reward: the case for incentive salience,” Psychopharmacology (Berl.), 191, 391–431, (2007).

    Article  CAS  Google Scholar 

  3. Cacciapaglia, F., Wightman, R. M., and Carelli, R. M., “Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior,” J. Neurosci., 3, 13860–13869 (2011).

    Article  Google Scholar 

  4. De Lafuente, V. and Romo, R., “Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions,” Proc. Natl. Acad. Sci. USA, 108, 19767–19771, (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ding, J., Peterson, J. D., and Surmeier, D. J., “Corticostriatal and thalamostriatal synapses have distinctive properties,” J. Neurosci., 28, 6483–6492 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gerfen, C. R. and Surmeier, D. J., “Modulation of striatal projection systems by dopamine,” Ann. Rev. Neurosci., 34, 441–466 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ivlieva, N. Yu., “Involvement of the mesocortico-limbic dopaminergic system in adpative behavior,” Zh. Vyssh. Nerv. Deyat., 60, No. 3, 259–278 (2010).

    CAS  Google Scholar 

  8. Kreitzer, A. C., “Physiology and pharmacology of striatal neurons,” Ann. Rev. Neurosci., 32, 127–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. McHaffie, J. G., Stanford, T. R., Stein, et al., “Subcortical loops through the basal ganglia,” Trends Neurosci., 28, 401–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Neve, K. A. and Neve, R. L., “Molecular biology of dopamine receptors,” in: The Dopamine Receptors, Neve, K. A. and Neve R. L. (eds.), Humana Press, Totowa, N.J. (1997), pp. 27–76.

    Chapter  Google Scholar 

  11. Oleson, E. B., Gentry, R. N., Chioma, V. C., and Cheer, J. F., “Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance,” J. Neurosci., 32, 14804–14808 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Puryear, C. B., Kim, M. J., and Mizumori, S. J., “Conjunctive encoding of movement and reward by ventral tegmental area neurons in the freely navigating rodent,” Behav. Neurosci., 124, 234–247, (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Reiner, A., Hart, N. M., Lei, W., and Deng, Y., “Corticostriatal projection neurons – dichotomous types and dichotomous functions,” Front. Neuroanat., 4, 14 (2010), Doi: 10.3389/fnana.2010.00142.

    Article  Google Scholar 

  14. Richfield, E. K., Penney, J. B., and Young, A. B., “Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system,” Neuroscience, 30, 767–777 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Roitman, M. F., Stuber, G. D., Phillips, P. E., et al., “Dopamine operates as a subsecond modulator of food seeking,” J. Neurosci., 24, 1265–1271 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Salamone, J. D., Correa, M., Farrar, A., and Mingote, S. M., “Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits,” Psychopharmacology (Berl.), 191, 461–482 (2007).

    Article  CAS  Google Scholar 

  17. Schultz, W., “Getting formal with dopamine and reward,” Neuron, 36, 241–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Shen, W., Flajolet, M., Greengard, P., and Surmeier, D. J., “Dichotomous dopaminergic control of striatal synaptic plasticity,” Science, 321, 848–851 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Shuvaev, V. T. and Suvorov, N. F., The Basal Ganglia and Behavior, Nauka, St. Petersburg (2001).

    Google Scholar 

  20. Taverna, S., Ilijic, E., and Surmeier, D. J., “Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson’s disease,” J. Neurosci., 28, 5504–5512 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Thorndike, E., Animal Intelligence: Experimental Studies, Macmillan, New York (1911).

    Book  Google Scholar 

  22. Wassum, K. M., Ostlund, S. B., and Maidment, N. T., “Phasic mesolimbic dopamine signaling precedes and predicts performance of a self-initiated action sequence task,” Biol. Psychiatry, 71, 846–854 (2012).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wise, R. A., “Dual roles of dopamine in food and drug seeking: The drivereward paradox,” Biol. Psychiatry, (2012), Doi:pii: S0006-3223(12) 00772-X. 10.1016/j.biopsych.2012.09.001.

  24. Wise, R. A. and Bozarth M. A., “Brain mechanisms of drug reward and euphoria,” Psychiatr. Med., 3, 445–460 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Ivlieva.

Additional information

Edited from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 64, No. 3, pp. 251–254, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivlieva, N.Y., Ivliev, D.A. The Specific Role of Dopamine in the Striatum during Operant Learning. Neurosci Behav Physi 46, 73–76 (2016). https://doi.org/10.1007/s11055-015-0200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-015-0200-y

Keywords

Navigation