Skip to main content
Log in

Microtubule Motor Proteins and the Mechanisms of Synaptic Plasticity

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Microtubule motor proteins – kinesins and dyneins – play an important role in intracellular transport. Impairments to axon transport can influence neurotransmitter release and short-term presynaptic plasticity. Impairments to dendritic transport, particularly recycling of synaptic receptors, affect postsynaptic plasticity. This review seeks to follow the link between microtubule motor proteins and the mechanisms of synaptic plasticity from the point of view of their involvement in transporting proteins and organelles, where their role in the mechanisms of synaptic plasticity has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, F. J., Echeverri, C. J., Vallee, R. B., and Baas P. W., “Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon,” J. Cell. Biol., 140, No. 2, 391–401 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ari, C., Borysov, S. I., Wu, J., et al., “Alzheimer amyloid beta inhibition of Eg5/kinesin 5 reduces neurotrophin and/or transmitter receptor function,” Neurobiol. Aging, 35, No. 8, 1839–1849 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura, N., Kimara, T., Nakamata, S., et al., “Anterograde transport of TrkB in axons is mediated by direct interaction with Slp1 and Rab27,” Dev. Cell, 16, No. 5, 675–686 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Bear, M. F. and Malenka, R. C., “Synaptic plasticity: LTP and LTD,” Curr. Opin. Neurobiol., 4, No. 3, 389–399 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Béïque J. C. and Andrade R., “PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex,” J. Physiol., 546, No. 3, 859–867 (2003).

    Article  PubMed  Google Scholar 

  • Bisby, M. A. and Bulger V. T., “Reversal of axonal transport at a nerve crush,” J. Neurochem., 29, No. 2, 313–320 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Blangy, A., Lane, H. A., d’Hérin, P., et al., “Phosphorylation by p34 cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo,” Cell, 83, No. 7, 1159–1169 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Brady, S. T., “A novel brain ATPase with properties expected for the fast axonal transport motor,” Nature, 317, No. 6032, 73–75 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Brittain, J. M., Piekarz A., D., Wang, Y., et al., “An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels,” J. Biol. Chem., 284, No. 45, 31,375–31,390 (2009).

  • Brown A., “Slow axonal transport: stop and go traffic in the axon,” Nat. Rev. Mol. Cell. Biol., 1, No. 2, 153–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Catterall, W. A. and Few, A. P., “Calcium channel regulation and presynaptic plasticity,” Neuron, 59, No. 6, 882–901 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Cai, Q., Gerwin, C., and Sheng, Z. H., “Syntabulin-mediated anterograde transport of mitochondria along neuronal processes,” J. Cell Biol., 170, No. 6, 959–969 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Q. and Sheng, Z. H., “Moving or stopping mitochondria: Miro as a traffic cop by sensing calcium,” Neuron, 61, No. 4, 493–496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y. and Sheng, Z. H., “Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport,” J. Cell Biol., 202, No. 2, 351–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davydova, D., Marini, C., King, O., et al., “Bassoon specifically controls presynaptic P/Q-type Ca2+ channels via RIM-binding protein,” Neuron, 82, No. 1, 181–194 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Derkach, V. A., Oh, M. C., Guire, E. S., and Soderling, T. R., “Regulatory mechanisms of AMPA receptors in synaptic plasticity,” Nat. Rev. Neurosci., 8, No. 2, 101–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Desai, A. and Mitchison, T. J., “Microtubule polymerization dynamics,” Annu. Rev. Cell. Dev. Biol., 13, No. 1, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach, R. J., Mackay, J. P., Armati, P. J., and Cunningham, A. L., “The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain,” Biochemistry, 37, No. 47, 16,663–16,670 (1998).

    Google Scholar 

  • Diefenbach, R. J., Diefenbach, E., Douglas, M. W., and Cunningham, A. L., “The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23,” Biochemistry, 41, No. 50, 14906–14915 (2002).

    Article  CAS  PubMed  Google Scholar 

  • DiStefano, R. S., Friedman, B., Radziejewski, C., et al., “The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons,” Neuron, 8, No. 5, 983–993 (1992).

    Article  CAS  PubMed  Google Scholar 

  • El-Husseini, A. E. D., Schnell, E., Dakoji, S., et al., “Synaptic strength regulated by palmitate cycling on PSD-95,” Cell, 108, No. 6, 849–863 (2002).

    Article  CAS  Google Scholar 

  • Fejtova, A., Davydova, D., Bischof, F., et al., “Dynein light chain regulates axonal trafficking and synaptic levels of Bassoon,” J. Cell Biol., 185, No. 2, 341–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann, J. C., Kins, S., Rostaing, P., et al., “Gephyrin interacts with Dynein light chains 1 and 2, components of motor protein complexes,” J. Neurosci., 22, No. 13, 5393–5402 (2002).

    CAS  PubMed  Google Scholar 

  • Guillaud, L., Wang, R., and Hirokawa, N., “Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release,” Nat. Cell Biol., 10, No. 1, 19–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hall, D. H. and Hedgecock, E. M., “Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans,” Cell, 65, No. 5, 837–847 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Hick, M., Herrmann, U., Weyer, S. W., et al., “Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity,” Acta Neuropathol., 129, No. 1, 21–37 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa, N., “Kinesin and dynein superfamily proteins and the mechanism of organelle transport,” Science, 279, No. 5350, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa, N. and Noda, Y., “Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics,” Physiol. Rev., 88, No. 3, 1089–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa, N., Niwa, S., and Tanaka, Y., “Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease,” Neuron, 68, No. 4, 610–638 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Hoeprich, G. J., Thompson, A. R., McVicker, D. P., et al., “Kinesin’s necklinker determines its ability to navigate obstacles on the microtubule surface,” Biophys. J., 106, No. 8, 1691–1700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janz, R., Südhof, T. C., Hammer, R. E., et al., “Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I,”, Neuron 24, No. 3, 687–700 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kamal, A., Almenar-Qaeralt, A., LeBlanc, J. F., et al., “Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-l requires APP,” Nature, 414, No. 6864, 643–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Kanai, Y., Okada, Y., Tanaka, Y., et al., “KIF5C, a novel neuronal kinesin enriched in motor neurons,” J. Neurosci., 20, No. 17, 6374–6384 (2000).

    CAS  PubMed  Google Scholar 

  • Kardon, J. R. and Vale R. D., “Regulators of the cytoplasmic dynein motor,” Nat. Rev. Mol. Cell Biol., 10, No. 12, 854–865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy, M. J. and Ehlers, M. D., “Organelles and trafficking machinery for postsynaptic plasticity,” Annu. Rev. Neurosci., 29, 325–362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. Y., Lee, K. Y., Lu, Y., et al., “Mitochondrial Ca2+ uptake is essential for synaptic plasticity in pain,” J. Neurosci., 31, No. 36, 12982–12991 (2001).

    Article  Google Scholar 

  • Kimara, N., Okabayashi, S., and Ono, F., “Dynein dysfunction disrupts intracellular vesicle trafficking bidirectionally and perturbs synaptic vesicle docking via endocytic disturbances: a potential mechanism underlying age-dependent impairment of cognitive function,” Am. J. Pathol., 180, No. 2, 550–561 (2012).

    Article  Google Scholar 

  • Kornau, H. C., Schenker L. T., Kennedy, M. B., and Seeburg, R. H., “Do main interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95,” Science, 269, No. 5231, 1737–1740 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Kwon S., E. and Chapman, E. R., “Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons,” Neuron, 70, No. 5, 847–854 (2011).

  • Levy, M., Faas, G. C., Saggaa, P., et al., “Mitochondrial regulation of synaptic plasticity in the hippocampus,” J. Biol. Chem., 278, No. 20, 17727–17734 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Maas, C., Tagnaouti, N., Loebrich, S., et al., “Neuronal cotransport of glycine receptor and the scaffold protein gephyrin,” J. Cell Biol., 172, No. 3, 441–451 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacAskill, A. F., Brickley, K., Stephenson, F. A., and Kittler, J. T., “GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons,” Mol. Cell Neurosci., 40, No. 3, 301–3 12 (2008).

    Article  PubMed  Google Scholar 

  • MacAskill, A. F., Rinholm J., E., Twelvetrees, A. E., et al., “Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses,” Neuron, 61, No. 4, 541–555 (2009).

  • Martin, M., Iyadarai, S. J., Gassman, A., et al., “Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport,” Mol. Biol. Cell, 10, No. 11, 3717–3728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki, H., Okada, Y., and Hirokawa, N., “Analysis of the kinesin superfamily: insights into structure and function,” Trends Cell Biol., 15, No. 9, 467–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Miller, K. E. and Sheetz, M. P., “Axonal mitochondrial transport and potential are correlated,” J. Cell Sci., 117, No. 13, 2791–2804 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Mitsumoto, H., Ferut, A. L., Kurahashi, K., and McQuarrie, L. G., “Impairment of retrograde axonal transport in wobbler mouse motor neuron disease,” Muscle Nerve, 13, No. 2, 121–126 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Mizui, T., Ishikawa, Y., Kumanogoh, H., et al., “BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met,” Proc. Natl. Acad. Sci. USA., 112, No. 23, 3067–3074 (2015).

    Article  Google Scholar 

  • Mok, H., Shin, H., Kim, S., et al., “Association of the kinesin superfamily motor protein KIFlBα with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-l proteins,” J. Neurosci., 22, No. 13, 5253–5258 (2002).

    CAS  PubMed  Google Scholar 

  • Mukherjee, K., Yang, X., Gerber, S. H., et al., “Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis,” Proc. Natl. Acad. Sci. USA, 107, No. 14, 6504–6509 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muresan, Z. and Muresan, V., “Coordinated transport of phosphorylated amyloid-β precursor protein and c-Jun NH2-terminal kinase-interacting protein-1,” J. Cell Biol., 171, No. 4, 615–625 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima, K., Yin, X., Takei, Y., et al., “Molecular motor KIF5A is essential for GABA A receptor transport, and KIF5A deletion causes epilepsy,” Neuron, 76, No. 5, 945–961 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Nangaku, M., Sato-Yoshitake, R., Okada, Y., et al., “KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria,” Cell, 79, No. 7, 1209–1220 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Niwa, S., Tanaka, Y., and Hirokawa, N., “KIF1Bβ- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD,” Nat. Cell Biol., 10, No. 11, 1269–1279 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., and Hirokawa, N., “The neuron-specifi c kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors,” Cell, 81, No. 5, 769–780 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Santos, M. S., Li, H., and Voglmaier, S. M., “Synaptic vesicle protein trafficking at the glutamate synapse,” Neurosci., 158, No. 1, 189–203 (2009).

    Article  CAS  Google Scholar 

  • Schlüter, O. M., Basu J., Südhof T. C., and Rosenmund, C., “Rab3 superprimes synaptic vesicles for release: implications for short-term synaptic plasticity,” J. Neurosci., 26, No. 4, 1239–1246 (2006).

    Article  PubMed  Google Scholar 

  • Schwarzer, C., Barnikol-Watanabe, S., Thinnes, F. P., and Hilschmann, N., “Voltage-dependent anion-selective channel (VDAC) interacts with the dynein light chain Tctexl and the heat-shock protein PBP74,” Int. J. Biochem. Cell Biol., 34, No. 9, 1059–1070 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Setou, M., Nakagawa, T., Seog, D. H., and Hirokawa, N., “Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport,” Science, 288, No. 5472, 1796–1802 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Shah, J. V. and Cleveland, D. W., “Slow axonal transport: fast motors in the slow lane,” Curr. Opin. Cell Biol., 14, No. 1, 58–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Shea, T. B. and Flanagan, L. A., “Kinesin, dynein and neurofilament transport,” Trends Neurosci., 24, No. 11, 644–648 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, J. D. and Huganir, R. L., “The cell biology of synaptic plasticity: AMPA receptor trafficking,” Annu. Rev. Cell Dev. Biol., 23, 613–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Shin, H., Wyszynski, M., Huh, K. H., et al., “Association of the kinesin motor KIF1A with the multimodular protein liprin-α,” J. Biol. Chem., 278, No. 13, 11393–11401 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Song, I. and Huganir, R. L., “Regulation of AMPA receptors during synaptic plasticity,” Trends Neurosci., 25, No. 11, 578–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Soppina, V, Norris, S. R., Dizaji, A. S., et al., “Dimerization of mammalian kinesin-3 motors results in superprocessive motion,” Proc. Natl. Acad. Sci. USA, 111, No. 15, 5562–5567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stowers, R. S., Megeath, L. J., Górska-Andrzejak, J., et al., “Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein,” Neuron, 36, No. 6, 1063–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Su, Q., Cai, Q., Gerwin, C., et al., “Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons,” Nat. Cell Biol., 6, No. 10, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Sugita, S., Janz, R., and Südhof, T. C., “Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells,” J. Biol. Chem., 274, No. 27, 18893–18901 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Sun, T., Qiao, H., Pan, P. Y., et al., “Motile axonal mitochondria contribute to the variability of presynaptic strength,” Cell Rep., 4, No. 3, 413–419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, Y., Kanai, Y., Okada, Y., et al., “Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria,” Cell, 93, No. 7, 1147–1158 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Tyagarajan, S. K, Ghosh, H, Yévenes, G. E., et al., “Regulation of GABAergic synapse formation and plasticity by GSK3β-dependent phosphorylation of gephyrin,” Proc. Natl. Acad. Sci. USA, 108, No. 1, 379–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Twelvetrees, A. E., Yuen, E. Y, Arancibia-Carcamo, I. L., et al., “Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin,” Neuron, 65, No. 1, 53–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vale, R. D., Reese, T. S., and Sheetz, M. P., “Identification of a novel forcegenerating protein, kinesin, involved in microtubule-based motility,” Cell, 42, No. 1, 3950 (1985).

    Article  Google Scholar 

  • Vale, R. D. and Milligan, R. A., “The way things move: looking under the hood of molecular motor proteins,” Science, 288, No. 5463, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Vallee, R. B. and Bloom G. S., “Mechanisms of fast and slow axonal transport,” Annu. Rev. Neurosci., 14, No. 1, 59–92 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Vasil’yeva, N. A, Murzina, G. B., and Pivovarov, A. S., “Habituation-like decrease of acetylcholine-induced inward current in Helix command neurons: role of microtubule motor proteins,” Cell Mol. Neurobiol., 35, No. 5, 703–712 (2015).

    Article  PubMed  Google Scholar 

  • Verhey, K. J., Meyer, D., Deehan, R., et al., “Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules,” J. Cell Biol., 152, No. 5, 959–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakana, Y., Villeneuve, J., van Galen, J., et al., “Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface,” J. Cell Biol., 202, No. 2, 241–250 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X. and Schwarz, T. L., “The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility,” Cell, 136, No. 1, 163–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeber, E. J., Levy, M, Sampson, M. J., et al., “The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity,” J. Biol. Chem., 277, No. 21, 18,891–18,897 (2002).

    Article  CAS  Google Scholar 

  • Wickstead, B. and Gull, K. A., “’Holistic’ kinesin phylogeny reveals new kinesin families and predicts protein functions,” Mol. Biol. Cell, 17, No. 4, 1734–1743 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, R. W., Setou, M., Teng, J., et al., “Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice,” Proc. Natl. Acad. Sci. USA, 99, No. 22, 14500–14505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyszynski, M., Kim, E., Dunah, A. W., et al., “Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting,” Neuron, 34, No. 1, 39–52 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yao, W. D., Gainetdinov, R. R., Arbuckle, M. I., et al., “Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity,” Neuron, 41, No. 4, 625–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Yonekawa, Y., Harada, A., Okada, Y., et al., “Defect in synaptic precursor transport and neuronal cell death in KIF1A motor protein-deficient mice,” J. Comp. Neurol., 141, No. 2, 431–441 (1998).

    CAS  Google Scholar 

  • Zhao, C., Takita, J., Tanaka, Y., et al., “Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ,” Cell, 105, No. 5, 587–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Pak, D., Qin, Y., et al., “Rap2-JNK removes synaptic AMPA receptors during depotentiation,” Neuron, 46, No. 6, 905–916 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vasil’eva.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 66, No. 2, pp. 148–162, March–April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, N.A., Pivovarov, A.S. Microtubule Motor Proteins and the Mechanisms of Synaptic Plasticity. Neurosci Behav Physi 47, 585–594 (2017). https://doi.org/10.1007/s11055-017-0439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-017-0439-6

Keywords

Navigation