Skip to main content
Log in

Variation in adaptive traits among and within Spanish and European populations of Castanea sativa: selection of trees for timber production

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Phenological, growth, form, and survival traits were assessed in 3-, 4-, 7-, 8-, and 12-year-old seedlings in two provenance–progeny tests of sweet chestnut (Castanea sativa Miller). One trial included six Spanish populations, with two subpopulations corresponding to wild and orchard trees distinguished within each population, and 77 open-pollinated families. The second trial encompassed six European populations and 156 open-pollinated families. Differences between populations were highly significant for phenological, growth, and form traits, and changes in the ranking of some populations were found for growth traits over the years of the study. Significant differences in survival were reported for the first time. Observed geographic variation among chestnut populations confirmed that drought is an important factor in determining traits related to growth and phenology. Significant differences among families were detected for all traits except for survival. Estimated individual heritabilities ranged from 0.21 to 0.43 for flushing, 0.16 to 0.37 for growth traits and straightness, 0.12 to 0.17 for bud set, and 0.08 to 0.24 for apical dominance. Significant, moderate genetic correlations were observed between growth and form traits, apical dominance and straightness, and flushing and bud set. On the basis of volume and form traits, the best trees of the best families within the best-adapted populations were selected for their inclusion in main and elite Galician breeding populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aria Rodríguez MJ, Ramil-Rego P (1995) Datos paleobotánicos del Norte de Portugal (Baixo Minho). Estudio polínico y paleocarpológico. Lagascalia 18(1):25–38

    Google Scholar 

  • Burdon RD (1977) Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silv Genet 26:168–175

    Google Scholar 

  • Burdon RD (2008) Short note: coefficients of variation in variables with bounded scales. Silv Genet 57(3):178–179

    Google Scholar 

  • Casasoli M, Pot D, Plomion C, Monteverdi MC, Barreneche T, Lauteri M, Villani F (2004) Identification of QLTs affecting adaptive traits in Castanea sativa Mill. Plant Cell Environ 27:1088–1101

    Article  CAS  Google Scholar 

  • Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the Sweet chestnut (Castanea sativa Mill.). Eur Ecol Med 30:179–193

    Google Scholar 

  • de la Mata R, Zas R (2010a) Performance of maritime pine Spanish Mediterranean provenances at young ages in a transitional region between Atlantic and Mediterranean climates in NW Spain. Silv Genet 59(1):8–17

    Google Scholar 

  • de la Mata R, Zas R (2010b) Transferring Atlantic maritime pine improved material to a region with marked Mediterranean influence in inland NW Spain: a likelihoodbase approach on spatially adjusted field data. Eur J For Res 129(4):645–658

    Article  Google Scholar 

  • Dempster ER, Lerner IM (1950) Heritability of threshold characters. Genetics 35:212–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Díaz R, Zas R, Fernández-López J (2007) Genetic variation of Prunus avium in susceptibility to cherry leaf spot (Blumeriella jaapii) in spatially heterogeneous infected seed orchards. Ann For Sci 64:21–30

    Article  Google Scholar 

  • Díaz R, Johnsen O, Fernández-López J (2009) Variation in spring and autumn freezing resistance among and within Spanish wild populations of Castanea sativa. Ann For Sci 66(7):708

    Article  Google Scholar 

  • Dutkowski GW, Costa e Silva J, Gilmour AR, Lopez GA (2002) Spatial analysis methods for forest genetic trials. Can J For Res 32:2201–2214

    Article  Google Scholar 

  • Eriksson G, Ekberg I (2001) An introduction to forest genetics. Swedish University of Agricultural Sciences, Upsala

    Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Falconer DS, Mackay TFC (2001) Introducción a la genética cuantitativa, 4th edn. Editorial Acribia S.A., Zaragoza

    Google Scholar 

  • Fernández-Cruz J, Fernández-López J (2012) Morphological, molecular and statistical tools to identify Castanea species and their hybrids. Conserv Genet 13(6):1589–1600

    Article  Google Scholar 

  • Fernández-López J (2011) Identification of the genealogy of interspecific hybrids between Castanea sativa, Castanea crenata and Castanea mollissima. For Syst 20(1):65–80

    Google Scholar 

  • Fernández-López J, Alia R (2003) EUFORGEN, Technical Guidelines for genetic conservation and use for chestnut (Castanea sativa). Int Plant Genet Res Inst, Rome

    Google Scholar 

  • Fernández-López J, Monteagudo AB (2010) Genetic structure of wild Spanish populations Castanea sativa as revealed by isozyme analysis. For Syst 19:156–169

    Google Scholar 

  • Fernández-López J, Zas R, Blanco-Silva R, Díaz R (2005a) Geographic differentiation for phenological traits in Spanish populations of wild chestnut (Castanea sativa Miller). Invest Agrar Sist Recur For 14(1):13–16

  • Fernández-López J, Zas R, Diaz R, Villani F, Cherubini M, Aravanopoulos FA, Alizoti PG, Eriksson G, Botta R, Mellano MG (2005b) Geographic variability among extreme European wild chestnut populations. Acta Hort 693:181–186

    Google Scholar 

  • Fineschi S, Taurchini D, Villani F, Vendramin G (2000) Chloroplast DNA polymorphism little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol Ecol 9:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • García-Antón M, Morla-Juaristi C, Saiz-Oller H (1990) Consideraciones sobre la presencia de algunos vegetales relictos terciarios durante el Cuaternario en la Península Ibérica. Bol R Soc Esp Hist Nat 86(1–4):95–105

    Google Scholar 

  • Gömöry D, Paule L, Gömöryová E (2011) Effects of microsite variation on growth and phenological traits in a beech provenance trial. J For Sci 57(5):192–199

    Google Scholar 

  • Hamann A, Namkoong G, Koshy MP (2002) Improving precision of breeding values by removing spatially autocorrelated variation in forestry field experiments. Silv Genet 51:5–6

    Google Scholar 

  • Howe GT, Aitken SN, Neale DB, Jermstad KD, Wheeler NC, Chen THH (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can J Bot 81:1247–1266

    Article  CAS  Google Scholar 

  • Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veg Hist Archaeobot 13:145–160

    Article  Google Scholar 

  • Lauteri M, Pliura A, Monteverdi MC, Brugnoli E, Villani F, Eriksson G (2004) Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J Evol Biol 17:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Mattioni C, Martín MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100(5):951–961

    Article  PubMed  Google Scholar 

  • Míguez-Soto B, Fernández-López J (2012) Genetic parameters and predicted selection responses for timber traits in a Castanea sativa progeny trial: developing a breeding program. Tree Genet Genomes 8:409–423

    Article  Google Scholar 

  • Pliura A, Eriksson G (2002) Genetic variation in juvenile height and biomass of open- pollinated families of six Castanea sativa Mill. populations in a 2 × 2 factorial temperature × watering experiment. Silv Genet 51(4):152–160

    Google Scholar 

  • SAS Institute (1999) SAS/STAT user's guide, Version 8 (computer program). Cary, NC, USA

  • Solignat G, Chapa J (1975) La biologie florare du châtaignier. INVUFLEC, CTIFL, Paris

  • Tchatchoua DT, Aravanopoulos FA (2010a) Evaluation of selected European chestnut (Castanea sativa) provenances—I: inter-provenance genetic variation. Acta Hort 866:203–213

    Google Scholar 

  • Tchatchoua DT, Aravanopoulos FA (2010b) Evaluation of selected European chestnut (Castanea sativa) provenances—II: intra-provenance genetic variation. Acta Hort 866:215–224

    Google Scholar 

  • Toval G (2010) Plan de Innovación y Mejora Forestal de Galicia (2010–2020). Centro de Investigación Forestal de Lourizán. Dirección Xeral de Montes. Consellería de Medio Rural. Xunta de Galicia

  • Wright JW (1976) Introduction to forest genetics. Academic Press, New York

    Google Scholar 

  • Xie CY, Ying CC (1996) Heritabilities, age–age correlations, and early selection in lodgepole pine (Pinus contorta spp. latifolia). Silv Genet 45:101–110

    Google Scholar 

  • Zas R (2006) Iterative kriging for removing spatial autocorrelation in analysis of forest genetic trials. Tree Genet Genomes 2(4):177–186

    Article  Google Scholar 

  • Zas R (2008a) Autocorrelación espacial y el diseño y análisis de experimentos. In: Maestre F, Escudero A, Bonet A (eds) Introducción al análisis espacial de datos en ecología y ciencias ambientales, métodos y aplicaciones. Universidad Rey Juan Carlos, Asociación Española de Ecología Terrestre y Caja de Ahorros del Mediterráneo, Madrid, pp 542–590

    Google Scholar 

  • Zas R (2008b) The impact of spatial heterogeneity on selection, a case study on Pinus pinaster breeding seedling orchards. Can J For Res 38:114–124

    Article  Google Scholar 

Download references

Acknowledgments

This study was initially supported by the R + D CASCADE Project (EVK2-CT1999-00006) of the European Commission (1999–2000) and the “Plan de Mellora Forestal para Galicia” from FEOGA (2000–2006). Acquisition of the most recent measurements was supported by INIA project RTA-2009-00163 from the Ministerio de Economía y Competitividad (2009–2012) and the INCITE Project 10MRU502012PR (2010–2013). We thank landowners Don Manuel Varela and the Neighboring Community of the Mountains of Rebordelo for allowing us to plant the trees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fernández-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Míguez-Soto, B., Fernández-López, J. Variation in adaptive traits among and within Spanish and European populations of Castanea sativa: selection of trees for timber production. New Forests 46, 23–50 (2015). https://doi.org/10.1007/s11056-014-9445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-014-9445-5

Keywords

Navigation