Skip to main content
Log in

MGMT expression and promoter methylation status may depend on the site of surgical sample collection within glioblastoma: a possible pitfall in stratification of patients?

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We recently described a three-layer concentric model of a glioblastoma (GBM) related to a specific distribution of molecular and phenotypic characteristics driven by the intratumoral hypoxic gradient in which the cancer stem cells niche is located in the hypoxic necrotic core of the tumour. The purpose of this study was to investigate the relationship between O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and MGMT expression in GBM samples collected according to the three-layer concentric model. Multiple tissue samples were obtained, by means of image-guided surgery, from the three concentric layers of newly diagnosed GBM. Two samples from each layer were collected from 12 patients (total 72 samples). Immunohistochemical analysis was performed on formalin-fixed paraffin-embedded tissue samples. The methylation status of the MGMT promoter was determined by methylation-specific polymerase-chain-reaction analysis. In all tumours, MGMT protein expression decreased progressively from the inner to the outer layer, and methylation of the MGMT promoter was unrelated to tumour layer. In particular, the MGMT promoter was unmethylated in all layers in 41.7% of tumours, methylated in all layers in 25%, and variably methylated in the three layers in 33.3%. We recorded concordance between MGMT expression and MGMT promoter methylation status within the GBM in only 58.8% of the samples collected. Our data suggest that both MGMT expression and promoter methylation data may be variable throughout GBM and that they may, consequently, depend on the site of surgical sample collection, even in the same patient. However, whereas MGMT expression is pre-operatively predictable when sampling is performed according to the three-layer concentric model, MGMT promoter methylation is not. These results must be considered when sample collection is performed for assessment of MGMT data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pistollato F, Abbadi S, Rampazzo E, Persano L, Della Puppa A, Frasson C, Sarto E, Scienza R, D’Avella D, Basso G (2010) Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 28:851–862

    Article  PubMed  CAS  Google Scholar 

  2. Weller M, Stupp R, Reifenberger G, Brandes AA, van den Bent MJ, Wick W, Hegi ME (2010) MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev Neurol 6:39–51

    Article  PubMed  CAS  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  4. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797

    PubMed  CAS  Google Scholar 

  5. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG, Belinsky SA (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60:5954–5958

    PubMed  CAS  Google Scholar 

  6. Nakasu S, Fukami T, Baba K, Matsuda M (2004) Immunohistochemical study for O6-methylguanine-DNA methyltransferase in the non-neoplastic and neoplastic components of gliomas. J Neurooncol 70:333–340

    Article  PubMed  Google Scholar 

  7. Sharma S, Salehi F, Scheithauer BW, Rotondo F, Syro LV, Kovacs K (2009) Role of MGMT in tumor development, progression, diagnosis, treatment and prognosis. Anticancer Res 29:3759–3768

    PubMed  CAS  Google Scholar 

  8. Gerson SL (2004) MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 4:296–307

    Article  PubMed  CAS  Google Scholar 

  9. Sabharwal A, Middleton MR (2006) Exploiting the role of O6-methylguanine-DNA-methyltransferase (MGMT) in cancer therapy. Curr Opin Pharmacol 6:355–363

    Article  PubMed  CAS  Google Scholar 

  10. van Nifterik KA, van den Berg J, van der Meide WF, Ameziane N, Wedekind LE, Steenbergen RD, Leenstra S, Lafleur MV, Slotman BJ, Stalpers LJ, Sminia P (2010) Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide. Br J Cancer 103:29–35

    Article  PubMed  Google Scholar 

  11. Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y, Matsukura S, Kudo S, Kitajima Y, Harada H, Furukawa K, Matsuzaki H, Emi M, Nakabeppu Y, Miyazaki K, Sekiguchi M, Mukai T (2003) Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene 22:8835–8844

    PubMed  CAS  Google Scholar 

  12. Cao VT, Jung TY, Jung S, Jin SG, Moon KS, Kim IY, Kang SS, Park CS, Lee KH, Chae HJ (2009) The correlation and prognostic significance of MGMT promoter methylation and MGMT protein in glioblastomas. Neurosurgery 65:866–875 discussion 875

    Article  PubMed  Google Scholar 

  13. Balana C, Ramirez JL, Taron M, Roussos Y, Ariza A, Ballester R, Sarries C, Mendez P, Sanchez JJ, Rosell R (2003) O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin Cancer Res 9:1461–1468

    PubMed  CAS  Google Scholar 

  14. Mellai M, Caldera V, Annovazzi L, Chio A, Lanotte M, Cassoni P, Finocchiaro G, Schiffer D (2009) MGMT promoter hypermethylation in a series of 104 glioblastomas. Cancer Genomics Proteomics 6:219–227

    PubMed  CAS  Google Scholar 

  15. Preusser M, Charles Janzer R, Felsberg J, Reifenberger G, Hamou MF, Diserens AC, Stupp R, Gorlia T, Marosi C, Heinzl H, Hainfellner JA, Hegi M (2008) Anti-O6-methylguanine-methyltransferase (MGMT) immunohistochemistry in glioblastoma multiforme: observer variability and lack of association with patient survival impede its use as clinical biomarker. Brain Pathol 18:520–532

    PubMed  CAS  Google Scholar 

  16. Rodriguez FJ, Thibodeau SN, Jenkins RB, Schowalter KV, Caron BL, O’Neill BP, James CD, Passe S, Slezak J, Giannini C (2008) MGMT immunohistochemical expression and promoter methylation in human glioblastoma. Appl Immunohistochem Mol Morphol 16:59–65

    PubMed  CAS  Google Scholar 

  17. Spiegl-Kreinecker S, Pirker C, Filipits M, Lotsch D, Buchroithner J, Pichler J, Silye R, Weis S, Micksche M, Fischer J, Berger W (2010) O6-Methylguanine DNA methyltransferase protein expression in tumor cells predicts outcome of temozolomide therapy in glioblastoma patients. Neuro Oncol 12:28–36

    Article  PubMed  CAS  Google Scholar 

  18. Brell M, Ibáñez J, Tortosa A (2011) O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction. BMC Cancer 11:35

    Article  PubMed  Google Scholar 

  19. Everhard S, Tost J, El Abdalaoui H, Criniere E, Busato F, Marie Y, Gut IG, Sanson M, Mokhtari K, Laigle-Donadey F, Hoang-Xuan K, Delattre JY, Thillet J (2009) Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol 11:348–356

    Article  PubMed  CAS  Google Scholar 

  20. Iaccarino C, Nicoli D, Gallo C, Nasi D, Pisanello A, De Berti G, Ghadirpour R, Marcello N, Servadei F (2010) Analysis of MGMT promoter methylation status on intraoperative fresh tissue section from frameless neuronavigation needle biopsy: a preliminary study of ten patients. Acta Neurochir (Wien) 152:1189–1196

    Article  Google Scholar 

  21. Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25:4127–4136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Giovanni Esposito (Istituto Oncologico Veneto–IRRCS, Padova) for technical support on histological analyses. This work was supported by funds from the Italian Association AIRC (Interregional Pediatric Project Grant). This work was supported in part by Grant Ricerca sanitaria Finalizzata 285/08 of Regione Veneto.

Conflicts of interest

The authors disclose funding received for this work from the following organizations: National Institutes of Health (NIH); Wellcome Trust; Howard Hughes Medical Institute (HHMI); other foundation(s) requiring open access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Della Puppa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Puppa, A., Persano, L., Masi, G. et al. MGMT expression and promoter methylation status may depend on the site of surgical sample collection within glioblastoma: a possible pitfall in stratification of patients?. J Neurooncol 106, 33–41 (2012). https://doi.org/10.1007/s11060-011-0639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0639-9

Keywords

Navigation