Skip to main content
Log in

Solution of the Problem of Central Pattern Generators and a New Concept of Brain Functions

  • Published:
Neurophysiology Aims and scope

A new concept of brain functions is proposed. According to it, the brain is a hierarchy of neural optimal control systems where each level possesses a dynamic model of its controlled object; this can be a lower control level in the CNS or an executive organ. The new concept of brain functions is based on the solution of the problem of central pattern generators and on the neural network computational principle. Contemporary data on the cerebellum, cortico-basal ganglia-thalamo-cortical loops (the structural/functional basis of the highest brain levels), Parkinson’s disease, and methods of its treatment (including deep brain stimulation) are analyzed from the point of view of the new concept of brain functions. These examples demonstrate the universal applicability of the new concept in the investigation of the physiology and pathophysiology of neural networks and the respective clinical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. C. S. Sherrington, The Integrative Action of the Nervous System, Yale Univ. Press, New Haven (1947).

    Google Scholar 

  2. P. A. Getting, “Understanding central pattern generators: insights gained from the study of invertebrate systems,” In: Neurobiology of Vertebrate Locomotion, S. Grillner, P. S. G. Stein, et al. (eds.), Macmillan Press, London (1986), pp. 231–244.

    Google Scholar 

  3. K. V. Baev, V. B. Esipenko, and Y. P. Shimansky, “Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat,” Neuroscience, 40, No. 1, 239–256 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. K. V. Baev, V. B. Esipenko, and Y. P. Shimansky, “Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat,” Neuroscience, 43, No. 1, 237–247 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. K. V. Baev, “Depolarization of different lumbar afferent terminals during fictitious scratching,” Neurophysiology (in Russian), 11, No. 6, 569–577 (1979).

    CAS  Google Scholar 

  6. K. V. Baev, “Polarization of lumbar primary afferent terminals during fictitious locomotion,” Neurophysiology (in Russian), 12, No. 5, 481–489 (1980).

    CAS  Google Scholar 

  7. K. V. Baev and P. G. Kostyuk, “Primary afferent depolarization evoked by activity of spinal scratching generator,” Neuroscience, 6, 205–215 (1981).

    Article  Google Scholar 

  8. K. V. Baev and P. G. Kostyuk, “Polarization of primary afferent terminals of lumbosacral cord elicited by activity of spinal locomotor generator,” Neuroscience, 7, 1401–1409 (1982).

    Article  Google Scholar 

  9. T. G. Brown, “On the nature of the fundamental activity of the nervous centres, together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system,” J. Physiol., 48, No. 1, 18–46 (1914).

    PubMed  CAS  Google Scholar 

  10. F. Brocard, S. Tazerart, and L. Vinay, “Do pacemakers drive the central pattern generator for locomotion in mammals?” Neuroscientist, 16, No. 2, 139–155 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. J. T. Buchanan, “Flexibility in the patterning and control of axial locomotor networks in lamprey,” Integr. Comp. Biol., 51, No. 6, 869–878 (2011).

    Article  PubMed  Google Scholar 

  12. L. M. Jordan and U. Slawinska, “Chapter 12-modulation of rhythmic movement: control of coordination,” Prog. Brain Res., 188, 181–195 (2011).

    Article  PubMed  Google Scholar 

  13. O. Kiehn and K. Kullander, “Central pattern generators deciphered by molecular genetics,” Neuron, 42, No. 3, 317–321 (2004).

    Article  Google Scholar 

  14. I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics, Springer-Verlag, Berlin, Heidelberg (1998).

    Google Scholar 

  15. V. Hamburger, “Some aspects of the embryology of behavior,” Quart. Rev. Biol., 38, 342–365 (1963).

    Article  PubMed  CAS  Google Scholar 

  16. V. Hamburger and M. Balaban, “Observations and experiments on spontaneous rhythmical behavior in the chick embryo,” Dev. Biol., 7, 533–545 (1963).

    Article  PubMed  CAS  Google Scholar 

  17. V. Hamburger and R. Oppenheim, “Prehatching motility and hatching behavior in the chick,” J. Exp. Zool., 166, No. 2, 171–203 (1967).

    Article  PubMed  CAS  Google Scholar 

  18. A. N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,” Dokl. Akad. Nauk USSR [in Russian], 114, 953–956 (1957).

    Google Scholar 

  19. L. M. Mendell and E. Henneman, “Terminals of single 1a fibers: Distribution within a pool of 300 homonymous motor neurons,” Science, 160, No. 3823, 96–98 (1968).

    Article  PubMed  CAS  Google Scholar 

  20. L. M. Mendell and E. Henneman, “Terminals of single 1a fibers: Location, density, and distribution within a pool of 300 homonymous motoneurons,” J. Neurophysiol., 34, No. 1, 171–187 (1971).

    PubMed  CAS  Google Scholar 

  21. K. V. Baev, “Learning in systems controlling motor automatisms,” Rev. Neurosci., 5, 55–87 (1994).

    Article  PubMed  CAS  Google Scholar 

  22. M. D. Crutcher and M. R. Delong, “Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity,” Exp. Brain Res. Exp. Hirnforsch. Exp. Cerebr., 53, No. 2, 244–258 (1984).

    CAS  Google Scholar 

  23. M. D. Crutcher and M. R. Delong, “Single cell studies of the primate putamen. I. Functional organization,” Exp. Brain Res. Exp. Hirnforsch. Exp. Cerebr., 53, No. 2, 233–243 (1984).

    CAS  Google Scholar 

  24. T. Kobayashi, H. Nishijo, M. Fukuda, et al., “Taskdependent representations in rat hippocampal place neurons,” J. Neurophysiol., 78, No. 2, 597–613 (1997).

    PubMed  CAS  Google Scholar 

  25. L. E. Sergio and J. F. Kalaska, “Systematic changes in directional tuning of motor cortex cell activity with hand location in the workspace during generation of static isometric forces in constant spatial directions,” J. Neurophysiol., 78, No. 2, 1170–1174 (1997).

    PubMed  CAS  Google Scholar 

  26. L. E. Sergio and J. F. Kalaska, “Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation,” J. Neurophysiol., 89, No. 1, 212–228 (2003).

    Article  PubMed  Google Scholar 

  27. K. V. Baev, “A new conceptual understanding of brain function: basic mechanisms of brain-initiated normal and pathological behaviors,” Crit. Rev. Neurobiol., 19, Nos. 2/3, 119–202 (2007).

    Article  PubMed  Google Scholar 

  28. K. V. Baev and Y. P. Shimansky, “Principles of organization of neural systems controlling automatic movements in animals,” Prog. Neurobiol., 39, No. 1, 45–112 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. Y. I. Arshavsky, I. M. Gelfand, and G. N. Orlovsky, Cerebellum and Rhythmic Movements, Springer-Verlag, Berlin (1986).

    Book  Google Scholar 

  30. J. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer-Verlag, Berlin (1967).

    Google Scholar 

  31. G. E. Alexander, M. D. Crutcher, and M. R. Delong, “Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions,” Prog. Brain Res., 85, 119–146 (1990).

    Article  PubMed  CAS  Google Scholar 

  32. G. E. Alexander, M. R. Delong, and P. L. Strick, “Parallel organization of functionally segregated circuits linking basal ganglia and cortex,” Annu. Rev. Neurosci., 9, 357–381 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. P. Apicella, E. Scarnati, T. Ljungberg, and W. Schultz, “Neuronal activity in monkey striatum related to the expectation of predictable environmental events,” J. Neurophysiol., 68, No. 3, 945–960 (1992).

    PubMed  CAS  Google Scholar 

  34. T. Ljungberg, P. Apicella, and W. Schultz, “Responses of monkey dopamine neurons during learning of behavioral reactions,” J. Neurophysiol., 67, No. 1, 145–163 (1992).

    PubMed  CAS  Google Scholar 

  35. W. Schultz, “Predictive reward signal of dopamine neurons,” J. Neurophysiol., 80, No. 1, 1–27 (1998).

    PubMed  CAS  Google Scholar 

  36. K. V. Baev, “Disturbances of learning processes in the basal ganglia in the pathogenesis of Parkinson’s disease: a novel theory,” Neurol. Res., 17, No. 1, 38–48 (1995).

    PubMed  CAS  Google Scholar 

  37. K. V. Baev, “Highest level automatisms in the nervous system: a theory of functional principles underlying the highest forms of brain function,” Progr. Neurobiol., 51, 129–166 (1997).

    Article  CAS  Google Scholar 

  38. K. V. Baev, Biological Neural Networks: Hierarchical Concept of Brain Function, Birkhauser, Boston (1998).

    Google Scholar 

  39. K. V. Baev, K. A. Greene, F. F. Marciano, et al., “Physiology and pathophysiology of cortico-basal ganglia-thalamocortical loops: theoretical and practical aspects,” Prog. Neuropsychopharmacol. Biol. Psychiat., 26, No. 4, 771–804 (2002).

    Article  Google Scholar 

  40. C. R. Butson and C. C. Mcintyre, “Role of electrode design on the volume of tissue activated during deep brain stimulation,” J. Neural. Eng., 3, No. 1, 1–8 (2006).

    Article  PubMed  Google Scholar 

  41. C. Hamani, J. A. Saint-Cyr, J. Fraser, et al., “The subthalamic nucleus in the context of movement disorders,” Brain, 127, Part 1, 4–20 (2004).

    Article  Google Scholar 

  42. M. Goard and Y. Dan, “Basal forebrain activation enhances cortical coding of natural scenes,” Nat. Neurosci., 12, No. 11, 1444–1449 (2009).

    Article  PubMed  CAS  Google Scholar 

  43. P. K. Anokhin, Biology and Neurophysiology of Conditioned Reflex and Its Role in Adaptive Behavior, Pergamon Press, Oxford (1974).

    Google Scholar 

  44. N. A. Bernstein, Sketches on Physiology of Movements and Physiology of Activity (in Russian), Meditzina, Moskow (1966).

    Google Scholar 

  45. E. von Holst, “Relations between the central nervous system and the peripheral organ,” Br. J. Anim. Behav., 2, 89–94 (1954).

    Article  Google Scholar 

  46. N. Chub and M. J. O’donovan, “Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo,” J. Neurosci., 18, No. 1, 294–306 (1998).

    PubMed  CAS  Google Scholar 

  47. J. Bickle, Psychoneural Reduction: The New Wave, Mit Press, Cambridge, Ma (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Baev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baev, K.V. Solution of the Problem of Central Pattern Generators and a New Concept of Brain Functions. Neurophysiology 44, 414–432 (2012). https://doi.org/10.1007/s11062-012-9313-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9313-x

Keywords

Navigation