Skip to main content
Log in

An Improved Structured Low-Rank Representation for Disjoint Subspace Segmentation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Low-rank representation (LRR) and its extensions have shown prominent performances in subspace segmentation tasks. Among these algorithms, structured-constrained low-rank representation (SCLRR) is proved to be superior to classical LRR because of its usage of structure information of data sets. Compared with LRR, in the objective function of SCLRR, an additional constraint term is added to compel the obtained coefficient matrices to reveal the subspace structures of data sets more precisely. However, it is very difficult to determine the best value for the corresponding parameter of the constraint term, and an improper value will decrease the performance of SCLRR sharply. For the sake of alleviating the problem in SCLRR, in this paper, we proposed an improved structured low-rank representation (ISLRR). Our proposed method introduces the structure information of data sets into the equality constraint term of LRR. Hence, ISLRR avoids the adjustment of the extra parameter. Experiments conducted on some benchmark databases showed that the proposed algorithm was superior to the related algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong W, Wright J, Huang K, Ma Y (2006) Multi-scale hybrid linear models for lossy image representation. IEEE Trans Image Process 15(12):3655–3671

    Article  MathSciNet  Google Scholar 

  2. Costeira J, Kanade T (1998) A multibody factorization method for independently moving objects. Int J Comput Vis 29(3):159–179

    Article  Google Scholar 

  3. Kanatani K (2001) Motion segmentation by subspace separation and model selection. In: IEEE international conference on computer vision, vol 2, pp 586–591

  4. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and nondegenerate. In: European Conference on Computer Vision, pp 94–106

  5. Zelnik-Manor L, Irani M (2003) Degeneracies, dependencies and their implications in multi-body and multi-sequence factorization. In: IEEE conference on computer vision and pattern recognition, vol 2, pp 287–293

  6. Vidal R, Favaro P (2014) Low rank subspace clustering. Pattern Recognit Lett 43:47–61

    Article  Google Scholar 

  7. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35:171–184

    Article  Google Scholar 

  8. Wei L, Wang X, Yin J, Wu A (2016) Spectral clustering steered low-rank representation for subspace segmentation]. J Vis Commun Image Represent 38:386–395

    Article  Google Scholar 

  9. Huang K, Ma Y, Vidal R (2004) Minimum effective dimension for mixtures of subspaces: a robust GPCA algorithm and its applications. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 631–638

  10. Ma Y, Yang AY, Derksen H, Fossum R (2008) Estimation of subspace arrangements with applications in modeling and segmenting mixed data. SIAM Rev 50(3):413–458

    Article  MathSciNet  Google Scholar 

  11. Zhang T, Szlam A, Wang Y, Lerman G (2012) Hybrid linear modeling via local bestfit flats. Int J Comput Vis 100(3):217–240

    Article  MathSciNet  Google Scholar 

  12. Bradley PS, Mangasarian OL (2000) K-plane clustering. J Glob Optim 16(1):23–32

    Article  MathSciNet  Google Scholar 

  13. Leonardis A, Bischof H, Maver J (2002) Multiple eigenspaces. Pattern Recogn 35(11):2613–2627

    Article  Google Scholar 

  14. Ma Y, Derksen H, Hong W, Wright J (2007) Segmentation of multivariate mixed data via lossy coding and compression. IEEE Trans Pattern Anal Mach Intell 29(9):1546–1562

    Article  Google Scholar 

  15. Elhamifar E, Vidal R (2009) Sparse subspace clustering. In: CVPR

  16. Patel VM, Nguyen HV, Vidal R (2013) Latent space sparse subspace clustering. In: ICCV, pp 225–232

  17. Lu C, Tang J, Lin M, Lin L, Yan S, Lin Z (2013) Correntropy induced L2 graph for robust subspace clustering. In: ICCV, pp 1801–1808

  18. Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: ICML-10, Haifa, Israel, pp 663–670

  19. Wei L, Wu A, Yin J (2015) Latent space robust subspace segmentation based on low rank and locality constraints. Expert Syst Appl 42:6598–6608

    Article  Google Scholar 

  20. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  21. Wei L, Wang X, Yin J, Wu A (2017) Self-regularized fixed-rank representation for subspace segmentation. Inf Sci 412–413:194–209

    Article  MathSciNet  Google Scholar 

  22. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  23. Wright J, Yang A, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  24. Wang Y, Xu C, You S, Xu C, Tao D (2017) DCT regularized extreme visual recovery. IEEE Trans Image Process 26(7):3360–3371

    Article  MathSciNet  Google Scholar 

  25. Liu Q, Lai Z, Zhou Z, Kuang F, Jin Z (2015) A truncated nuclear norm regularization method based on weighted residual error for matrix completion. IEEE Trans Image Process 25(1):316–330

    Article  MathSciNet  Google Scholar 

  26. Wang Y, Xu C, Xu C, Tao D (2017) Beyond RPCA: flattening complex noise in the frequency domain In: AAAI conference on artificial intelligence

  27. Hu Y, Zhang D, Ye J, Li X, He X (2013) Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans Pattern Anal Mach Intell 35(9):2117–2130

    Article  Google Scholar 

  28. Li J, Xu C, Yang W, Sun C, Tao D (2017) Discriminative multi-view interactive image re-ranking. IEEE Trans Image Process 26(7):3113–3127

    Article  MathSciNet  Google Scholar 

  29. Li J, Xu C, Yang W, Sun C (2017) SPA: spatially pooled attributes for image retrieval. Neurocomputing 257:47–58

    Article  Google Scholar 

  30. Chen J, Zhang H, Mao H, Sang Y, Yi Z (2014) Symmetric low-rank representation for subspace clustering. Neurocomputing 173(3):1192–1202

    Google Scholar 

  31. Zhuang L, Wang J, Lin Z, Yang AY, Ma Y, Yu N (2016) Locality-preserving low-rank representation for graph construction from nonlinear manifolds. Neurocomputing 175:715–722

    Article  Google Scholar 

  32. Zhang YL, Jiang Z, Larry S (2013) Learning structured low-rank representations for image classification. In: Computer vision and pattern recognition, pp 676–683

  33. Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012) Non-negative low rank and sparse graph for semi-supervised learning, In: CVPR, pp 2328–2335

  34. Tang K, Liu R, Su Z, Zhang J (2014) Structure-constrained low-rank representation. IEEE Trans Neural Netw Learn Syst 25(12):2167–2179

    Article  Google Scholar 

  35. Li X, Li X, Liu C, Liu H (2016) Structure-constrained low-rank and partial sparse representation with sample selection for image classification. Pattern Recognit 59:5–13

    Article  Google Scholar 

  36. Wu T, Gurram P, Rao RM, Bajwa W (2016) Clustering-aware structure-constrained low-rank representation model for learning human action attributes. In: Image, video, and multidimensional signal processing workshop. IEEE, pp 1–5

  37. Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747

  38. Zhang X (2004) Matrix analysis and applications. Springer, New York

    Google Scholar 

  39. Cai JF, Candès EJ, Shen Z (2008) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  MathSciNet  Google Scholar 

  40. Lin Z, Chen M, Wu L, Ma Y (2009) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. In: UIUC, Champaign, IL, USA, Technical Report UILU-ENG-09-2215

  41. Eckstein J, Bertsekas DP (1992) On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program 55(1–3):293–318

    Article  MathSciNet  Google Scholar 

  42. Tron R, Vidal R (2007) A benchmark for the comparison of 3-D motion segmentation algorithms. In: IEEE international conference on computer vision and pattern recognition (ICCV)

  43. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of 2nd IEEE workshop applications of computer vision

  44. Lee KC, Ho J, Driegman D (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Wei.

Ethics declarations

Conflict of interest

The authors declared that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L., Zhang, Y., Yin, J. et al. An Improved Structured Low-Rank Representation for Disjoint Subspace Segmentation. Neural Process Lett 50, 1035–1050 (2019). https://doi.org/10.1007/s11063-018-9901-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9901-x

Keywords

Navigation