Skip to main content

Advertisement

Log in

In vivo Effects of the Anatoxin-a on Striatal Dopamine Release

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Anatoxin-a is an important neurotoxin that acts a potent nicotinic acetylcholine receptor agonist. This characteristic makes anatoxin-a an important tool for the study of nicotinic receptors. Anatoxin-a has been used extensively in vitro experiments, however anatoxin-a has never been studied by in vivo microdialysis studies. This study test the effect of anatoxin-a on striatal in vivo dopamine release by microdialysis.

The results of this work show that anatoxin-a evoked dopamine release in a concentration-dependent way. Atropine had not any effect on dopamine release evoked by 3.5 mM anatoxin-a. However, perfusion of nicotinic antagonists mecamylamine and α-bungarotoxin induced a total inhibition of the striatal dopamine release. Perfusion of α7*-receptors antagonists, metillycaconitine or α-bungarotoxin, partially inhibits the release of dopamine stimulated by anatoxin-a. These results show that anatoxin-a can be used as an important nicotinic agonist in the study of nicotinic receptor by in vivo microdialysis technique and also support further in vivo evidences that α7*nicotinic AChRs are implicated in the regulation of striatal dopamine release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of anabaena flos-aquae toxin. Science 187:542–544

    Article  PubMed  CAS  Google Scholar 

  2. Biggs DF, Dryden WF (1977) Action of anatoxin-I at neuromuscular junction. Proc West Pharmacol Soc 20: 461–466

    PubMed  CAS  Google Scholar 

  3. Carmichael WW (1989) Freshwater cyanobacteria (blue-green algae) toxins. In: Ownby CL, Odell GV, (Eds). Natural Toxins: Characterization, Pharmacology and Therapeutics. Pergamon Press, Oxford, pp. 3–16

    Google Scholar 

  4. Spivak CE, Witkop B, Albuquerque EX (1980) Anatoxin-a: a novel, potent agonist at the nicotinic receptor. Mol Pharmacol 18: 384–394

    PubMed  CAS  Google Scholar 

  5. Thomas P, Stephens M, Wilkie G, Amar M, Lunt GG, Whiting P, Gallagher T, Pereira E, Alkondon M, Albuquerque EX, Wonnacott S (1993) (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors. J Neurochem 60: 2308–2311

    Article  PubMed  CAS  Google Scholar 

  6. Amar M, Thomas P, Johnson C, Lunt GG, Wonnacott S (1993) Agonist pharmacology of the neuronal alpha 7 nicotinic receptor expressed in Xenopus oocytes. FEBS Lett 327: 284–288

    Article  PubMed  CAS  Google Scholar 

  7. Swanson KL, Allen CN, Aronstam RS, Rapoport H, Albuquerque EX (1986) Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a. Mol Pharmacol 29: 250–257

    PubMed  CAS  Google Scholar 

  8. Aronstam RS, Witkop B (1981) Anatoxin-a interactions with cholinergic synaptic molecules. Proc Natl Acad Sci USA 78: 4639–4643

    Article  PubMed  CAS  Google Scholar 

  9. Macallan DR, Lunt GG, Wonnacott S, Swanson KL, Rapoport H, Albuquerque EX (1988) Methyllycaconitine and (+)-anatoxin-a differentiate between nAChRs in vertebrate and invertebrate nervous systems. FEBS Lett 226: 357–363

    Article  PubMed  CAS  Google Scholar 

  10. Romanelli MN, Gualtieri F (2003) Cholinergic nAChRs: competitive ligands, allosteric modulators, and their potential applications. Med Res Rev 23: 393–426

    Article  PubMed  CAS  Google Scholar 

  11. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13: 596–604

    PubMed  CAS  Google Scholar 

  12. Zoli M, Lena C, Picciotto MR, Changeux JP (1998) Identification of four classes o f brain nAChRs using beta2 mutant mice. J Neurosci 18: 4461–4472

    PubMed  CAS  Google Scholar 

  13. Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22: 8785–8789

    PubMed  CAS  Google Scholar 

  14. Dani JA (2001) Overview of nAChRs and their roles in the central nervous system. Biol Psychiatry 49: 166–174

    Article  PubMed  CAS  Google Scholar 

  15. Vizi ES, Lendvai B (1999) Modulatory role of presynaptic nAChRs in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Rev 30: 219–235

    Article  CAS  PubMed  Google Scholar 

  16. Wonnacott S (1997) Presynaptic nicotinic Ach receptors. Trends Neurosci 20: 92–98

    Article  PubMed  CAS  Google Scholar 

  17. Cao YJ, Surowy CS, Puttfarcken PS (2005) Nicotinic acetylcholine receptor-mediated [3H]dopamine release from hippocampus. J Pharmacol Exp Ther 312: 1298–1304

    Article  PubMed  CAS  Google Scholar 

  18. Clarke PB, Reuben M (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 117: 595–606

    PubMed  CAS  Google Scholar 

  19. Sershen H, Balla A, Lajtha A, Vizi ES (1997) Characterization of nAChRs involved in the release of noradrenaline from the hippocampus. Neuroscience 77: 121–130

    Article  PubMed  CAS  Google Scholar 

  20. Wilkie GI, Hutson P, Sullivan JP, Wonnacott S (1996) Pharmacological characterization of a nicotinic autoreceptor in rat hippocampal synaptosomes. Neurochem Res 21: 1141–1148

    Article  PubMed  CAS  Google Scholar 

  21. Marchi M, Lupinacci M, Bernero E, Bergaglia F, Raiteri M (1999) nAChRs modulating ACh release in rat cortical synaptosomes: role of Ca2+ ions in their function and desensitization. Neurochem Int 34: 319–328

    Article  PubMed  CAS  Google Scholar 

  22. Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80: 1071–1078

    Article  PubMed  CAS  Google Scholar 

  23. Anderson DJ, Puttfarcken PS, Jacobs I, Faltynek C (2000) Assessment of nicotinic acetylcholine receptor-mediated release of [(3)H]-norepinephrine from rat brain slices using a new 96-well format assay. Neuropharmacology 39: 2663–2672

    Article  PubMed  CAS  Google Scholar 

  24. Kaiser SA, Soliakov L, Harvey SC, Luetje CW, Wonnacott S (1998) Differential inhibition by alpha-conotoxin-MII of the nicotinic stimulation of [3H] dopamine release from rat striatal synaptosomes and slices. J Neurochem 70: 1069–1076

    Article  PubMed  CAS  Google Scholar 

  25. Kaiser S, Wonnacott S (2000) α-Bungarotoxin-Sensitive nAChRs indirectly modulate [3H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58: 312–318

    PubMed  CAS  Google Scholar 

  26. Soliakov L, Gallagher T, Wonnacott S (1995) Anatoxin-a-evoked 3[H]dopamine release from rat striatal synaptosomes. Neuropharmacology 34: 1535–1541

    Article  PubMed  CAS  Google Scholar 

  27. Soliakov L, Wonnacott S (1996) Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J Pharmacol 35: 163–170

    Google Scholar 

  28. Soliakov L., Wonnacott S (2001) Involvement of protein kinase C in the presynaptic nicotinic modulation of [(3)H]-dopamine release from rat striatal synaptosomes. Br J Pharmacol 132: 785–791

    Article  PubMed  CAS  Google Scholar 

  29. Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nAChRs modulating dopamine release in the rat striatum. Eur J Pharmacol 393: 51–58

    Article  PubMed  CAS  Google Scholar 

  30. Björklund A, Lindvall, O (1984) In: Björklund A, Hökfelt, T (eds), Classical Transmitters in the CNS Part I. Elsevier, Amsterdam, pp 55–122

  31. Butcher LL, Woolf NJ (1982) Monoaminergic-cholinergic relationships and the chemical communication matrix of the substantia nigra and neostriatum. Brain Res Bull 9: 475–492

    Article  PubMed  CAS  Google Scholar 

  32. Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4: 1224–1229

    Article  PubMed  CAS  Google Scholar 

  33. Alfonso M, Duran R, Campos F, Perez-Vences D, Faro LR, Arias B (2003) Mechanisms underlying domoic acid-induced dopamine release from striatum: an in vivo microdialysis study. Neurochemistry Res 10: 1487–1493

    Article  Google Scholar 

  34. Paxinos G, Watson C (1986) The rat brain: In Stereotaxic Coordinates, (4Th edition). Academic Press, New York

    Google Scholar 

  35. Fu Y, Matta SG, Gao W, Sharp BM (2000) Local alpha-bungarotoxin-sensitive nAChRs in the nucleus accumbens modulate nicotine-stimulated dopamine secretion in vivo. Neuroscience 101: 369–375

    Article  PubMed  CAS  Google Scholar 

  36. Marshall D, Soliakov L, Redfern P, Wonnacott S (1996) Tetrodotoxin-sensitivity of nicotine-evoked dopamine release from rat striatum. Neuropharmacology 35: 1531–1536

    Article  PubMed  CAS  Google Scholar 

  37. Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68: 1511–1519

    Article  PubMed  CAS  Google Scholar 

  38. Nisell M, Nomikos GG, Svensson TH (1994) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75: 348–352

    Article  PubMed  CAS  Google Scholar 

  39. Rahman S, McBride WJ (2002) Involvement of GABA and cholinergic receptors in the nucleus accumbens on feedback control of somatodendritic dopamine release in the ventral tegmental area. J Neurochem 80: 646–654

    Article  PubMed  CAS  Google Scholar 

  40. Rahman S, Zhang J, Corrigall WA (2004) Local perfusion of nicotine differentially modulates somatodendritic dopamine release in the rat ventral tegmental area after nicotine preexposure. Neurochem Res 29: 1687–1693

    Article  PubMed  CAS  Google Scholar 

  41. Reid RT, Lloyd GK, Rao TS (1999) Pharmacological characterization of nicotine-induced acetylcholine release in the rat hippocampus in vivo: evidence for a permissive dopamine synapse. Br J Pharmacol 127: 1486–1494

    Article  PubMed  CAS  Google Scholar 

  42. Rossi S, Singer S, Shearman E, Sershen H, Lajtha A (2005) The effects of cholinergic and dopaminergic antagonists on nicotine-induced cerebral neurotransmitter changes. Neurochem Res 30: 541–558

    Article  PubMed  CAS  Google Scholar 

  43. Whitehead KJ, Rose S, Jenner P (2001) Involvement of intrinsic cholinergic and GABAergic innervation in the effect of NMDA on striatal dopamine efflux and metabolism as assessed by microdialysis studies in freely moving rats. Eur J Neurosci 14: 851–860

    Article  PubMed  CAS  Google Scholar 

  44. Durán R, Alfonso M, Arias B (1998) Determination of biogenic amines in rat brain dialysates by High Performance Liquid Chromatography. J Liq Chromatogr Rel Technol 21: 2799–2811

    Article  Google Scholar 

  45. Gago-Martinez A, Rellan S, Campos F, Alfonso M, Durán R (2003) HPLC determination of anatoxin-a An application for the evaluation of this Diffusion rate through the microdialysis probe. The 117th AOAC International Annual Meeting and Exposition. Atlanta

  46. Varanda WA, Aracava Y, Sherby SM, VanMeter WG, Eldefrawi ME, Albuquerque EX (1985) The acetylcholine receptor of the neuromuscular junction recognizes mecamylamine as a noncompetitive antagonist. Mol Pharmacol 28: 128–137

    PubMed  CAS  Google Scholar 

  47. Chen D, Patrick JW (1997) The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit. J Biol Chem 272: 24024–24029

    Article  PubMed  CAS  Google Scholar 

  48. Role LW, Berg DK (1996) nAChRs in the development and modulation of CNS synapses. Neuron 16: 1077–1085

    Article  PubMed  CAS  Google Scholar 

  49. Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L, McIntosh JM, Changeux JP (2002) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22: 1208–1217

    PubMed  CAS  Google Scholar 

  50. el-Bizri H, Clarke PB (1994) Blockade of nicotinic receptor-mediated release of dopamine from striatal synaptosomes by chlorisondamine administered in vivo. Br J Pharmacol 111: 414–418

    PubMed  CAS  Google Scholar 

  51. Grady S, Marks MJ, Wonnacott S, Collins AC (1992) Characterization of nicotinic receptor-mediated [3H]dopamine release from synaptosomes prepared from mouse striatum. J Neurochem 59: 848–856

    Article  PubMed  CAS  Google Scholar 

  52. Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM, McIntosh JM, Rossi F, Champtiaux N, Zoli M, Changeux JP (2003) Effects of nicotine in the DAergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholinereceptors. Eur J Neurosci 17: 1329–1337

    Article  PubMed  CAS  Google Scholar 

  53. Rapier C, Lunt GG, Wonnacott S (1988) Stereoselective nicotine-induced release of dopamine from striatal synaptosomes: concentration dependence and repetitive stimulation. J Neurochem 50: 1123–1130

    Article  PubMed  CAS  Google Scholar 

  54. Nicke A, Wonnacott S, Lewis RJ (2004) Alpha-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. Eur J Biochem 271: 2305–2319

    Article  PubMed  CAS  Google Scholar 

  55. Miller DK, Crooks PA, Dwoskin LP (2000) Lobeline inhibits nicotine-evoked [(3)H]dopamine overflow from rat striatal slices and nicotine-evoked (86)Rb(+) efflux from thalamic synaptosomes. Neuropharmacology 39: 2654–2662

    Article  PubMed  CAS  Google Scholar 

  56. Miller DK, Harrod SB, Green TA, Wong MY, Bardo MT, Dwoskin LP (2003) Lobeline attenuates locomotor stimulation induced by repeated nicotine administration in rats. Pharmacol Biochem Be 74: 279–286

    Article  CAS  Google Scholar 

  57. Sacaan AI, Menzaghi F, Dunlop JL, Correa LD, Whelan KT, Lloyd GK (1996) Epibatidine: a nicotinic acetylcholine receptor agonist releases monoaminergic neurotransmitters: in vitro and in vivo evidence in rats. J Pharmacol Exp Ther 276: 509–515

    PubMed  CAS  Google Scholar 

  58. Sacaan AI, Dunlop JL, Lloyd GK (1995) Pharmacological characterization of neuronal acetylcholine gated ion channel receptor-mediated hippocampal norepinephrine and striatal dopamine release from rat brain slices. J Pharmacol Exp Ther 274: 224–230

    PubMed  CAS  Google Scholar 

  59. Grilli M, Parodi M, Raiteri M, Marchi M (2005) Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. J Neurochem 93: 1353–1560

    Article  PubMed  CAS  Google Scholar 

  60. Risso F, Parodi M, Grilli M, Molfino F, Raiteri M, Marchi M (2004) Chronic nicotine causes functional upregulation of ionotropic glutamate receptors mediating hippocampal noradrenaline and striatal dopamine release. Neurochem Int 44: 293–301

    Article  PubMed  CAS  Google Scholar 

  61. Sakurai Y, Takano Y, Kohjimoto Y, Honda K, Kamiya HO (1982) Enhancement of [3H]dopamine release and its [3H]metabolites in rat striatum by nicotinic drugs. Brain Res 242: 99–106

    Article  PubMed  CAS  Google Scholar 

  62. Salminen O, Murphy KL, McIntosh JM, Drago J, Marks MJ, Collins AC, Grady SR (2004) Subunit composition and pharmacology of two classes of striatal presynaptic nicotinic acetylcholine receptors mediating dopamine release in mice. Mol Pharmacol 65: 1526–1535

    Article  PubMed  CAS  Google Scholar 

  63. Carboni E, Silvagni A, Rolando MT, Di Chiara G (2000) Stimulation of in vivo dopamine transmission in the bed nucleus of stria terminalis by reinforcing drugs. J Neurosci 2000 20: 1–5

    Google Scholar 

  64. Janhunen S, Ahtee L (2004) Comparison of the effects of nicotine and epibatidine on the striatal extracellular dopamine. Eur J Pharmacol 494: 167–177

    Article  PubMed  CAS  Google Scholar 

  65. Lecca D, Shim I, Costa E, Javaid JI (2000) Striatal application of nicotine, but not of lobeline, attenuates dopamine release in freely moving rats. Neuropharmacology 39: 88–98

    Article  PubMed  CAS  Google Scholar 

  66. Tani Y, Saito K, Imoto M, Ohno T (1998) Pharmacological characterization of nicotinic receptor-mediated acetylcholine release in rat brain—an in vivo microdialysis study. Eur J Pharmacol 351: 181–188

    Article  PubMed  CAS  Google Scholar 

  67. Sacaan AI, Reid RT, Santori EM, Adams P, Correa LD, Mahaffy LS, Bleicher L, Cosford ND, Stauderman KA, McDonald IA, Rao TS, Lloyd GK (1997) Pharmacological characterization of SIB-1765F: a novel cholinergic ion channel agonist. J Pharmacol Exp Ther 280: 373–383

    PubMed  CAS  Google Scholar 

  68. Chavez-Noriega LE, Crona JH, Washburn MS, Urrutia A, Elliott KJ, Johnson EC (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors h alpha 2 beta 2, h alpha 2 beta 4, h alpha 3 beta 2, h alpha 3 beta 4, h alpha 4 beta 2, h alpha 4 beta 4 and h alpha 7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280: 346–356

    PubMed  CAS  Google Scholar 

  69. Shimosato K, Nagao N, Watanabe S, Kitayama S (2003) Suppressive effects of trihexyphenidyl on methamphetamine-induced dopamine release as measured by in vivo microdialysis. Synapse 49: 47–54

    Article  PubMed  CAS  Google Scholar 

  70. Smolders I, Bogaert L, Ebinger G, Michotte Y (1997) Muscarinic modulation of striatal dopamine, glutamate, and GABA release, as measured with in vivo microdialysis. J Neurochem 68: 1942–1948

    Article  PubMed  CAS  Google Scholar 

  71. Mogg AJ, Whiteaker P, McIntosh JM, Marks M, Collins AC, Wonnacott S (2002) Methyllycaconitine is a potent antagonist of alpha-conotoxin-MII-sensitive presynaptic nicotinic acetylcholine receptors in rat striatum. J Pharmacol Exp Ther 302: 197–204

    Article  PubMed  CAS  Google Scholar 

  72. Cao YJ, Surowy CS, Puttfarcken PS (2005) Different nicotinic acetylcholine receptor subtypes mediating striatal and prefrontal cortical [3H]dopamine release. Neuropharmacology 48: 72–79

    Article  PubMed  CAS  Google Scholar 

  73. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383: 713–716

    Article  PubMed  CAS  Google Scholar 

  74. Hamada M, Higashi H, Nairn AC, Greengard P, Nishi A (2004) Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons. J Neurochem 90: 1094–1103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Direction General de Investigación-Ministerio de Ciencia y Tecnología (BQU2002–00083) and the Xunta de Galicia (PGIDT02PXIB30101PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, F., Durán, R., Vidal, L. et al. In vivo Effects of the Anatoxin-a on Striatal Dopamine Release. Neurochem Res 31, 491–501 (2006). https://doi.org/10.1007/s11064-006-9042-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9042-x

Keywords

Navigation