Skip to main content
Log in

Effect of Diabetes on Glycogen Metabolism in Rat Retina

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 ± 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMP:

Adenosine monophosphate

GP:

Glycogen phosphorylase

GPa:

Glycogen phosphorylase in its active form (measured in the absence of AMP)

GS:

Glycogen synthase

GSK-3:

Glycogen synthase kinase-3

RPE:

Retinal pigment epithelium

References

  1. Saltiel AR, Pessin JE (2002) Insulin signaling pathways in time and space. Trends Cell Biol 12:65–71

    Article  PubMed  CAS  Google Scholar 

  2. van de Werve G, Jeanrenaud B (1987) Liver glycogen metabolism: an overview. Diabetes Metab Rev 3:47–78

    Article  PubMed  Google Scholar 

  3. Buschiazzo H, Exton JH, Park CR (1970) Effects of glucose on glycogen synthase, phosphorylase, and glycogen deposition in the perfused rat liver. Proc Natl Acad Sci USA 65:383–387

    Article  PubMed  CAS  Google Scholar 

  4. Stalmans W, Bollen M, Mvumbi L (1987) Control of glycogen synthesis in health and disease. Diabetes Metab Rev 3:127–161

    PubMed  CAS  Google Scholar 

  5. Ciudad CJ, Carabaza A, Guinovart JJ (1988) Glycogen synthesis from glucose and fructose in hepatocytes from diabetic rats. Arch Biochem Biophys 267:437–447

    Article  PubMed  CAS  Google Scholar 

  6. Frank RN (1995) Diabetic retinopathy. Prog Retinal Eye Res 14:361–392

    Article  Google Scholar 

  7. Hood DC, Birch DG (1990) The A-wave of the human electroretinogram and rod receptor function. Invest Ophthalmol Vis Sci 31:2070–2081

    PubMed  CAS  Google Scholar 

  8. Holopigian K, Seiple W, Lorenzo M, Carr R (1992) A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Invest Ophthalmol Vis Sci 33:2773–2780

    PubMed  CAS  Google Scholar 

  9. Vinores SA, Campochiaro PA (1989) Prevention or moderation of some ultrastructural changes in the RPE and retina of galactosemic rats by aldose reductase inhibition. Exp Eye Res 49:495–510

    Article  PubMed  CAS  Google Scholar 

  10. Graymore CN (1970) Biochemistry of the retina. In: Graymore CN (ed) Biochemistry of the eye. Academic Press, London, pp 645–735

    Google Scholar 

  11. Winkler BS (1981) Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 77:667–692

    Article  PubMed  CAS  Google Scholar 

  12. Coffe V, Carbajal RC, Salceda R (2004) Glycogen metabolism in the rat retina. J Neurochem 88:885–890

    Article  PubMed  CAS  Google Scholar 

  13. Swanson RA (1992) Physiological coupling of glial glycogen metabolism to neural activity in brain. Can J Physiol Pharmacol 70:S138–S144

    PubMed  CAS  Google Scholar 

  14. Salceda R, Vilchis C, Coffe V, Hernández-Muñoz R (1998) Changes in the redox state in the retina and brain during the onset of diabetes in rats. Neurochem Res 23:893–897

    Article  PubMed  CAS  Google Scholar 

  15. Dringen R, Hamprecht B (1992) Glucose, insulin and isulin-like growth factor I regulate the glycogen content in astroglia-rich primary cultures. J Neurochem 58:511–517

    Article  PubMed  CAS  Google Scholar 

  16. Dringen R, Hamprecht B (1993) Differences in glycogen metabolism in astroglia-rich primary cultures and sorbitol-selected astroglial cultures derived from mouse brain. Glia 8:143–149

    Article  PubMed  CAS  Google Scholar 

  17. Naccache PH, Gilbert C, Barabé F, Al-Shami A, Mahana W, Bourgoin SG (1997) Agonist-specific tyrosine phosphorylation of Cbl in human neutrophils. J Leukocyte Biol 62:901–910

    PubMed  CAS  Google Scholar 

  18. Vaillant C, Chesnel F, Schausi D, Tiffoche C, Thieulant ML (2002) Expression of estrogen receptor subtypes in rat pituitary gland during pregnancy and lactation. Endocrinol 143:4249–4258

    Article  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 93:265–275

    Google Scholar 

  20. Kunst A, Draeger B, Ziegenhorn J (1984) Colorimetric methods with glucose oxidase and peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. 3rd edn, vol VI. Verlag Chemie, Weinheim, pp 178–185

    Google Scholar 

  21. David ES, Crerar MM (1986) Quantitation of muscle glycogen phosphorylase mRNA and enzyme amounts in adult rat tissues. Biochim Biophys Acta 880:78–90

    PubMed  CAS  Google Scholar 

  22. Crerar MM, Karlsson O, Fletterick RJ, Hwang PK (1995) Chimeric muscle and brain glycogen phosphorylases define protein domains governing isozyme-specific responses to allosteric activation. J Biol Chem 270:13748–13756

    Article  PubMed  CAS  Google Scholar 

  23. Newgard CB, Hwang PK, Fletterick RJ (1989) The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol 24:69–99

    Article  PubMed  CAS  Google Scholar 

  24. Gannon MC, Nuttall FQ (1997) Effect of feeding, fasting and diabetes on liver glycogen synthase activity, protein and mRNA in rats. Diabetologia 40:758–763

    Article  PubMed  CAS  Google Scholar 

  25. Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci USA 98:6417–6422

    Article  PubMed  CAS  Google Scholar 

  26. Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74:179–183

    Article  PubMed  CAS  Google Scholar 

  27. Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311

    Article  PubMed  CAS  Google Scholar 

  28. Pfeiffer-Guglielmi B, Francke M, Reichenbach A, Fleckenstein B, Jung G, Hamprecht B (2004) Glycogen phosphorylase isozyme pattern in mammalian retinal Müller glial cells and in astrocytes of retina and optic nerve. Glia 49:84–95

    Article  Google Scholar 

  29. Nihira M, Anderson K, Gorin FA, Burns MS (1995) Primate rod and cone photoreceptors may differ in glucose accessibility. Invest Ophthalmol Vis Sci 36:1259–1270

    PubMed  CAS  Google Scholar 

  30. Bahnak BR, Gold AH (1982) Effects of alloxan diabetes on the turnover of rat liver glycogen synthase. J Biol Chem 257:8775–8770

    PubMed  CAS  Google Scholar 

  31. Fernández-Novell JM, Arino J, Guinovart JJ (1994) Effects of glucose on the activation and translocation of glycogen synthase in diabetic rat hepatocytes. Eur J Biochem 226:665–671

    Article  PubMed  Google Scholar 

  32. Shulman RG, Bloch G, Rothman DL (1995) In vivo regulation of muscle glycogen synthase and the control of glycogen synthesis. Proc Natl Acad Sci USA 92:8535–8542

    Article  PubMed  CAS  Google Scholar 

  33. Embi N, Rylatt DB, Cohen P (1980) Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519–527

    Article  PubMed  CAS  Google Scholar 

  34. Parker PJ, Caudwell FB, Cohen P (1983) Glycogen synthase from rabbit skeletal muscle: effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem 130:227–234

    Article  PubMed  CAS  Google Scholar 

  35. Newgard CB, Brady MJ, O’Doherty RM, Saltiel AR (2000) Organizing glucose disposal: emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 49:1967–1977

    Article  PubMed  CAS  Google Scholar 

  36. Skurat AV, Roach PJ (1995) Phosphorylation of sites 3a and 3b (Ser-640 and Ser-644) in the control of rabbit muscle glycogen synthase. J Biol Chem 270:12491–12497

    Article  PubMed  CAS  Google Scholar 

  37. Nakielny S, Campbell DG, Cohen P (1991) The molecular mechanism by which adrenalin inhibits glycogen synthesis. Eur J Biochem 199:713–722

    Article  PubMed  CAS  Google Scholar 

  38. Skurat AV, Wang Y, Roach PJ (1994) Rabbit skeletal muscle glycogen synthase expressed in COS cells: identification of regulatory phosphorylation sites. J Biol Chem 269:25534–25542

    PubMed  CAS  Google Scholar 

  39. Guinovart JJ, Salavert A, Massagué J, Ciudad CJ, Salsas E, Itarte E (1979) Glycogen synthase: a new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett 106:284–288

    Article  PubMed  CAS  Google Scholar 

  40. Das A, Pansky B, Budd GC, Kollarits CR (1984) Immunocytochemistry of mouse and human retina with antisera to insulin and S-100. Curr Eye Res 3:1397–1403

    Article  PubMed  CAS  Google Scholar 

  41. Waldbillig RJ, Fletcher RT, Chader GJ, Rajagopalan S, Rodrigues M, LeRoith D (1987) Retinal insulin receptors. 2. Characterization and insulin-induced tyrosine kinase activity in bovine retinal rod outer segments. Exp Eye Res 45:837–844

    Article  PubMed  CAS  Google Scholar 

  42. Leschey KH, Hackett SF, Singer JH, Campochiaro PA (1990) Growth factor responsiveness of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 31:839–846

    PubMed  CAS  Google Scholar 

  43. Rosenzweig SA, Zetterström C, Benjamin A (1990) Identification of retinal insulin receptors using site-specific antibodies to carboxyl terminal peptide of the human insulin receptor α-subunit. J Biol Chem 265:18030–18034

    PubMed  CAS  Google Scholar 

  44. Hsu SC, Molday RS (1991) Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells. J Biol Chem 266:21745–21752

    PubMed  CAS  Google Scholar 

  45. Mantych GJ, Hageman GS, Devaskar SU (1993) Characterization of glucose transporter isoforms in the adult and developing human eye. Endocrinology 133:600–607

    Article  PubMed  CAS  Google Scholar 

  46. Skurat AV, Dietrich AD, Roach PJ (2000) Glycogen synthase sensitivity to insulin and glucose-6-phosphate is mediated by both NH2- and COOH-terminal phosphorylation sites Diabetes 49:1096–1100

    Article  PubMed  CAS  Google Scholar 

  47. Magistretti PJ (1988) Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diab Metab (Paris) 14:237–246

    CAS  Google Scholar 

  48. Swanson RA, Yu ACH, Chan PH, Sharp FR (1990) Glutamate increases glycogen content and reduces glucose utilization in primary asrtocyte culture. J Neurochem 54:490–496

    Article  PubMed  CAS  Google Scholar 

  49. Meijer AJ, Baquet A, Gustafson L, van Woerkom GM, Hue L (1992) Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem 267:5823–5828

    PubMed  CAS  Google Scholar 

  50. Vilchis C, Salceda R (1996) Effect of diabetes on levels and uptake of putative amino acid neurotransmitters in rat retina and retinal pigment epithelium. Neurochem Res 21:1167–1171

    Article  PubMed  CAS  Google Scholar 

  51. Lieth E,Lanoue KF, Antonetti DA, Ratz M, The Penn State Research Group (2000) Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. Exp Eye Res 70:723–730

    Article  PubMed  CAS  Google Scholar 

  52. Kuwabara T, Cogan DG (1961) Retinal glycogen. Arch Ophthalomol 66:680–689

    CAS  Google Scholar 

  53. Pow D, Robinson S (1994) Glutamate in some retinal neurons is derived solely from glia. Neurosci 60:355–366

    Article  CAS  Google Scholar 

  54. Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19:307–312

    Article  PubMed  CAS  Google Scholar 

  55. Mizutani M, Gerhardinger C, Lorezi M (1998) Muller cell changes in human diabetic retinopathy. Diabetes 47:445–449

    Article  PubMed  CAS  Google Scholar 

  56. Rungger-Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41:1971–1980

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank H. Solis for his assistance in some experiments. This study was supported in part by CONACYT (Grant U45840-M) and by PAPIIT/UNAM project IN201707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Salceda.

Additional information

Gustavo Sánchez-Chávez and Jethro Hernández-Berrones have contributed equally to the work and therefore should be considered equivalent authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Chávez, G., Hernández-Berrones, J., Luna-Ulloa, L.B. et al. Effect of Diabetes on Glycogen Metabolism in Rat Retina. Neurochem Res 33, 1301–1308 (2008). https://doi.org/10.1007/s11064-007-9583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9583-7

Keywords

Navigation