Skip to main content
Log in

Peroxynitrite is Involved in the Apoptotic Death of Cultured Cerebellar Granule Neurons Induced by Staurosporine, but not by Potassium Deprivation

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) regulates numerous physiological process and is the main source of reactive nitrogen species (RNS). NO promotes cell survival, but it also induces apoptotic death having been involved in the pathogenesis of several neurodegenerative diseases. NO and superoxide anion react to form peroxynitrite, which accounts for most of the deleterious effects of NO. The mechanisms by which these molecules regulate the apoptotic process are not well understood. In this study, we evaluated the role of NO and peroxynitrite in the apoptotic death of cultured cerebellar granule neurons (CGN), which are known to experience apoptosis by staurosporine (St) or potassium deprivation (K5). We found that CGN treated with the peroxynitrite catalyst, FeTTPs were completely rescued from St-induced death, but not from K5-induced death. On the other hand, the inhibition of the inducible nitric oxide synthase partially protected cell viability in CGN treated with K5, but not with St, while the inhibitor L-NAME further reduced the cell viability in St, but it did not affect K5. Finally, an inhibitor of the soluble guanylate cyclase (sGC) diminished the cell viability in K5, but not in St. Altogether, these results shows that NO promotes cell survival in K5 through sGC-cGMP and promotes cell death by other mechanisms, while in St NO promotes cell survival independently of cGMP and peroxynitrite results critical for St-induced death. Our results suggest that RNS are differentially handled by CGN during cell death depending on the death-inducing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moran J, Itoh T, Reddy UR, Chen M, Alnemri ES, Pleasure D (1999) Caspase-3 expression by cerebellar granule neurons is regulated by calcium and cyclic AMP. J Neurochem 73:568–577

    Article  CAS  PubMed  Google Scholar 

  2. Nardi N, Avidan G, Daily D, Zilkha-Falb R, Barzilai A (1997) Biochemical and temporal analysis of events associated with apoptosis induced by lowering the extracellular potassium concentration in mouse cerebellar granule neurons. J Neurochem 68:750–759

    Article  CAS  PubMed  Google Scholar 

  3. D’Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90:10989–10993

    Article  PubMed  PubMed Central  Google Scholar 

  4. D’Mello SR, Borodezt K, Soltoff SP (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 17:1548–1560

    PubMed  Google Scholar 

  5. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360

    CAS  PubMed  Google Scholar 

  6. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramiro-Cortes Y, Moran J (2009) Role of oxidative stress and JNK pathway in apoptotic death induced by potassium deprivation and staurosporine in cerebellar granule neurons. Neurochem Int 55:581–592

    Article  CAS  PubMed  Google Scholar 

  8. Ramiro-Cortes Y, Guemez-Gamboa A, Moran J (2011) Reactive oxygen species participate in the p38-mediated apoptosis induced by potassium deprivation and staurosporine in cerebellar granule neurons. Int J Biochem Cell Biol 43:1373–1382

    Article  CAS  PubMed  Google Scholar 

  9. Valencia A, Moran J (2001) Role of oxidative stress in the apoptotic cell death of cultured cerebellar granule neurons. J Neurosci Res 64:284–297

    Article  CAS  PubMed  Google Scholar 

  10. Valencia A, Moran J (2004) Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 36:1112–1125

    Article  CAS  PubMed  Google Scholar 

  11. Olguin-Albuerne M, Dominguez G, Moran J (2014) Effect of staurosporine in the morphology and viability of cerebellar astrocytes: role of reactive oxygen species and NADPH oxidase. Oxid Med Cell Longev 2014:678371

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, Rosenberg PA (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24:10616–10627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shacka JJ, Sahawneh MA, Gonzalez JD, Ye YZ, D’Alessandro TL, Estevez AG (2006) Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ 13:1506–1514

    Article  CAS  PubMed  Google Scholar 

  14. Martinez MC, Andriantsitohaina R (2009) Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal 11:669–702

    Article  CAS  PubMed  Google Scholar 

  15. Szabo C (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull 41:131–141

    Article  CAS  PubMed  Google Scholar 

  16. Szabo C (2006) Poly(ADP-ribose) polymerase activation by reactive nitrogen species–relevance for the pathogenesis of inflammation. Nitric Oxide 14:169–179

    Article  CAS  PubMed  Google Scholar 

  17. Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844

    Article  CAS  PubMed  Google Scholar 

  18. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chabrier PE, Demerle-Pallardy C, Auguet M (1999) Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 55:1029–1035

    Article  CAS  PubMed  Google Scholar 

  21. Klotz LO, Schieke SM, Sies H, Holbrook NJ (2000) Peroxynitrite activates the phosphoinositide 3-kinase/Akt pathway in human skin primary fibroblasts. Biochem J 352(Pt 1):219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang L, Zhu ZA (2014) Nitric oxide show its survival role by NO-PKC pathway through cGMP-dependent or independent on the culture of cerebella granular neurons. Neurosci Lett 583:165–169

    Article  CAS  PubMed  Google Scholar 

  23. Duport S, Garthwaite J (2005) Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 135:1155–1166

    Article  CAS  PubMed  Google Scholar 

  24. Erusalimsky JD, Moncada S (2007) Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 27:2524–2531

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L (2013) Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS ONE 8:e70331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gallo V, Kingsbury A, Balazs R, Jorgensen OS (1987) The role of depolarization in the survival and differentiation of cerebellar granule cells in culture. J Neurosci 7:2203–2213

    CAS  PubMed  Google Scholar 

  27. Caballero-Benitez A, Moran J (2003) Caspase activation pathways induced by staurosporine and low potassium: role of caspase-2. J Neurosci Res 71:383–396

    Article  CAS  PubMed  Google Scholar 

  28. Schulz JB, Weller M, Klockgether T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci 16:4696–4706

    CAS  PubMed  Google Scholar 

  29. Atlante A, Calissano P, Bobba A, Azzariti A, Marra E, Passarella S (2000) Cytochrome c is released from mitochondria in a reactive oxygen species (ROS)-dependent fashion and can operate as a ROS scavenger and as a respiratory substrate in cerebellar neurons undergoing excitotoxic death. J Biol Chem 275:37159–37166

    Article  CAS  PubMed  Google Scholar 

  30. Sanchez-Carbente MR, Castro-Obregon S, Covarrubias L, Narvaez V (2005) Motoneuronal death during spinal cord development is mediated by oxidative stress. Cell Death Differ 12:279–291

    Article  CAS  PubMed  Google Scholar 

  31. Moran J, Patel AJ (1989) Effect of potassium depolarization on phosphate-activated glutaminase activity in primary cultures of cerebellar granule neurons and astroglial cells during development. Brain Res Dev Brain Res 46:97–105

    Article  CAS  PubMed  Google Scholar 

  32. Guemez-Gamboa A, Moran J (2009) NOX2 mediates apoptotic death induced by staurosporine but not by potassium deprivation in cerebellar granule neurons. J Neurosci Res 87:2531–2540

    Article  CAS  PubMed  Google Scholar 

  33. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  34. Jensen MP, Riley DP (2002) Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg Chem 41:4788–4797

    Article  CAS  PubMed  Google Scholar 

  35. Brown GC (2010) Nitric oxide and neuronal death. Nitric Oxide 23:153–165

    Article  CAS  PubMed  Google Scholar 

  36. Fatokun AA, Stone TW, Smith RA (2008) Prolonged exposures of cerebellar granule neurons to S-nitroso-N-acetylpenicillamine (SNAP) induce neuronal damage independently of peroxynitrite. Brain Res 1230:265–272

    Article  CAS  PubMed  Google Scholar 

  37. Estevez AG, Spear N, Thompson JA, Cornwell TL, Radi R, Barbeito L, Beckman JS (1998) Nitric oxide-dependent production of cGMP supports the survival of rat embryonic motor neurons cultured with brain-derived neurotrophic factor. J Neurosci 18:3708–3714

    CAS  PubMed  Google Scholar 

  38. Bonthius DJ, Bonthius NE, Li S, Karacay B (2008) The protective effect of neuronal nitric oxide synthase (nNOS) against alcohol toxicity depends upon the NO-cGMP-PKG pathway and NF-kappaB. Neurotoxicology 29:1080–1091

    Article  CAS  PubMed  Google Scholar 

  39. Vitecek J, Lojek A, Valacchi G, Kubala L (2012) Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediators Inflamm 2012:318087

    Article  PubMed  PubMed Central  Google Scholar 

  40. Coyoy A, Olguin-Albuerne M, Martinez-Briseno P, Moran J (2013) Role of reactive oxygen species and NADPH-oxidase in the development of rat cerebellum. Neurochem Int 62:998–1011

    Article  CAS  PubMed  Google Scholar 

  41. Kawano T, Kunz A, Abe T, Girouard H, Anrather J, Zhou P, Iadecola C (2007) iNOS-derived NO and nox2-derived superoxide confer tolerance to excitotoxic brain injury through peroxynitrite. J Cereb Blood Flow Metab 27:1453–1462

    Article  CAS  PubMed  Google Scholar 

  42. Li CY, Chin TY, Chueh SH (2004) Rat cerebellar granule cells are protected from glutamate-induced excitotoxicity by S-nitrosoglutathione but not glutathione. Am J Physiol Cell Physiol 286:C893–C904

    Article  CAS  PubMed  Google Scholar 

  43. Thiyagarajan M, Kaul CL, Sharma SS (2004) Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br J Pharmacol 142:899–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lane P, Hao G, Gross SS (2001) S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation. Sci STKE 2001:re1

  45. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411:385–400

    Article  CAS  PubMed  Google Scholar 

  46. Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526

    Article  CAS  PubMed  Google Scholar 

  47. Huang Z, Pinto JT, Deng H, Richie JP Jr (2008) Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol 75:2234–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1:154–158

    Article  CAS  PubMed  Google Scholar 

  49. Bao F, Liu D (2003) Peroxynitrite generated in the rat spinal cord induces apoptotic cell death and activates caspase-3. Neuroscience 116:59–70

    Article  CAS  PubMed  Google Scholar 

  50. Dohi K, Ohtaki H, Inn R, Ikeda Y, Shioda HS, Aruga T (2003) Peroxynitrite and caspase-3 expression after ischemia/reperfusion in mouse cardiac arrest model. Acta Neurochir Suppl 86:87–91

    CAS  PubMed  Google Scholar 

  51. Lau A, Arundine M, Sun HS, Jones M, Tymianski M (2006) Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26:11540–11553

    Article  CAS  PubMed  Google Scholar 

  52. Viner RI, Williams TD, Schoneich C (1999) Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Biochemistry 38:12408–12415

    Article  CAS  PubMed  Google Scholar 

  53. Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schoneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207

    Article  CAS  PubMed  Google Scholar 

  54. Ghafourifar P, Schenk U, Klein SD, Richter C (1999) Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274:31185–31188

    Article  CAS  PubMed  Google Scholar 

  55. Borutaite V, Morkuniene R, Brown GC (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453:41–48

    Article  CAS  PubMed  Google Scholar 

  56. Al-Ani B, Hewett PW, Ahmed S, Cudmore M, Fujisawa T, Ahmad S, Ahmed A (2006) The release of nitric oxide from S-nitrosothiols promotes angiogenesis. PLoS ONE 1:e25

    Article  PubMed  PubMed Central  Google Scholar 

  57. Virgili M, Monti B, LoRusso A, Bentivogli M, Contestabile A (1999) Developmental effects of in vivo and in vitro inhibition of nitric oxide synthase in neurons. Brain Res 839:164–172

    Article  CAS  PubMed  Google Scholar 

  58. Salykina MA, Sorokina EG, Krasilnikova IA, Reutov VP, Pinelis VG (2013) Effects of selective inhibitors of neuronal and inducible NO-synthase on ATP content and survival of cultured rat cerebellar neurons during hyperstimulation of glutamate receptors. Bull Exp Biol Med 155:40–43

    Article  CAS  PubMed  Google Scholar 

  59. Ciani E, Virgili M, Contestabile A (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. J Neurochem 81:218–228

    Article  CAS  PubMed  Google Scholar 

  60. Pantazis NJ, West JR, Dai D (1998) The nitric oxide-cyclic GMP pathway plays an essential role in both promoting cell survival of cerebellar granule cells in culture and protecting the cells against ethanol neurotoxicity. J Neurochem 70:1826–1838

    Article  CAS  PubMed  Google Scholar 

  61. Karacay B, Li G, Pantazis NJ, Bonthius DJ (2007) Stimulation of the cAMP pathway protects cultured cerebellar granule neurons against alcohol-induced cell death by activating the neuronal nitric oxide synthase (nNOS) gene. Brain Res 1143:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  CAS  PubMed  Google Scholar 

  63. Riccio A, Alvania RS, Lonze BE, Ramanan N, Kim T, Huang Y, Dawson TM, Snyder SH, Ginty DD (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 21:283–294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by DGAPA-UNAM (IN206213) and CONACYT (179234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Morán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olguín-Albuerne, M., Ramos-Pittol, J.M., Coyoy, A. et al. Peroxynitrite is Involved in the Apoptotic Death of Cultured Cerebellar Granule Neurons Induced by Staurosporine, but not by Potassium Deprivation. Neurochem Res 41, 316–327 (2016). https://doi.org/10.1007/s11064-015-1805-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1805-9

Keywords

Navigation