Skip to main content

Advertisement

Log in

Distinct Expression of Various Angiogenesis Factors in Mice Brain After Whole-Brain Irradiation by X-ray

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Radiation-induced brain injury (RBI) is the most serious complication after radiotherapy. However, the etiology of RBI remains elusive. In order to evaluate the effect of X-rays on normal brain tissue, adult male BALB/C mice were subjected to whole-brain exposure with a single dose of 10 Gy or sham radiation. The structure and number of mice brain vessels were investigated 1, 7, 30, 90 and 180 days after irradiation by H&E staining and immune-fluorescence staining. Compared with sham control mice, in addition to morphological changes, a significant reduction of microvascular density was detected in irradiated mice brains. Whole-brain irradiation also caused damage in tight junction (TJ). Increased expression of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) was observed in irradiated mouse brains showed by Western Blot. Immune-fluorescence staining results also verified the co-labeling of GFAP and VEGF after whole-brain irradiation. Furthermore, the protein expression levels of other angiogenesis factors, angiopoietin-1 (Ang-1), endothelial-specific receptor tyrosine kinase (Tie-2), and angiopoietin-2 (Ang-2) in brain were determined by Western Blot. Increased expression of Ang-2 was shown in irradiated mouse brains. In contrast, whole-brain irradiation significantly decreased Ang-1 and Tie-2 expression. Our data indicated that X-rays induced time-dependent microvascular injury and activation of astrocytes after whole-brain irradiation in mouse brain. Distinct regulation of VEGF/Ang2 and Ang-1/Tie-2 are closely associated with RBI, suggesting that angiogenesis interventions might be beneficial for patients with RBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Y et al (2016) Neuroprotective effects of Kukoamine a against radiation-induced rat brain injury through inhibition of oxidative stress and neuronal apoptosis. Neurochem Res 41(10):2549–2558

    Article  CAS  PubMed  Google Scholar 

  2. Regal PJ et al (2014) Acute late-onset encephalopathy after radiotherapy: an unusual life-threatening complication. Neurology 82(12):1102

    Article  PubMed  Google Scholar 

  3. Gupta M et al (2013) Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study. NMR Biomed 26(12):1733–1741

    Article  CAS  PubMed  Google Scholar 

  4. Coderre JA et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166(3):495–503

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y et al (2010) An experimental study of acute radiation-induced cognitive dysfunction in a young rat model. AJNR Am J Neuroradiol 31:383–387

    Article  CAS  PubMed  Google Scholar 

  6. Nonoguchi N et al (2011) The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: pathological consideration of their potential roles. J Neurooncol 105:423–431

    Article  CAS  PubMed  Google Scholar 

  7. Wei M et al (2012) Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation. J Korean Med Sci 27(3):291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee SW et al (2009) Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med 23(2):279–284

    CAS  PubMed  Google Scholar 

  9. Ridet JL et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  10. Augustin HG et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Lee C et al (2005) Angiopoietin-2 facilitates vascular endothelial growth factor-induced angiogenesis in the mature mouse brain. Stroke 36(7):1533–1537

    Article  CAS  PubMed  Google Scholar 

  12. Zhou H et al (2011) Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. Am J Neuroradiol 32(10):1795–1800

    Article  CAS  PubMed  Google Scholar 

  13. Nordal RA et al (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10(10):3342–3353

    Article  CAS  PubMed  Google Scholar 

  14. Brown WR et al (2007) Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurol Sci 257:67–71

    Article  PubMed  Google Scholar 

  15. Tanino T et al (2013) Radiation-induced microbleeds after cranial irradiation: evaluation by phase-sensitive magnetic resonance imaging with 3.0 T. Yonago Acta Med 56(1):7–12

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Drigotas M et al (2013) Reactive oxygen species activation of MAPK pathway results in VEGF upregulation as an undesired irradiation response. J Oral Pathol Med 42(8):612–619

    Article  CAS  PubMed  Google Scholar 

  17. Ferrara N (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol 237:1–30

    CAS  PubMed  Google Scholar 

  18. Breier G et al (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532

    CAS  PubMed  Google Scholar 

  19. Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320

    Article  CAS  PubMed  Google Scholar 

  20. Yancopoulos GD et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  CAS  PubMed  Google Scholar 

  21. Owen MR et al (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol 58(4–5):689–721

    Article  PubMed  Google Scholar 

  22. Lau LT et al (2001) Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-gamma following traumatic and metabolic injury. J Neurotrauma 18:351–359

    Article  CAS  PubMed  Google Scholar 

  23. Etoh T et al (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61(5):2145–2153

    CAS  PubMed  Google Scholar 

  24. Kutryk MJ et al (2003) Angiogenesis of the heart. Microsc Res Tech 60(2):138–158

    Article  PubMed  Google Scholar 

  25. Davis S et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  CAS  PubMed  Google Scholar 

  26. Cascone I et al (2003) Tie-2-dependent activation of RhoA and Rac1 participates in endothelial cell motility triggered by angiopoietin-1. Blood 102(7):2482–2490

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L et al (2003) Tumor-derived vascular endothelial growth factor up- regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63(12):3403–3412

    CAS  PubMed  Google Scholar 

  28. Maisonpierre PC et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  CAS  PubMed  Google Scholar 

  29. Chae SS et al (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16(14):3618–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  CAS  PubMed  Google Scholar 

  31. Goel S et al (2011) Normailization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee WH et al (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, ang-1, tie-2 and ang-2 in rat brain. Radiat Res 176(6):753–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding was provided by Guangzhou Science and Technology Program (CN) (Grant No. 2014Y2-00155) and National Natural Science Foundation of China (Grant No. 81271386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiwei Huang.

Ethics declarations

Conflict of interest

None.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Huang, H., Wu, X. et al. Distinct Expression of Various Angiogenesis Factors in Mice Brain After Whole-Brain Irradiation by X-ray. Neurochem Res 42, 625–633 (2017). https://doi.org/10.1007/s11064-016-2118-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2118-3

Keywords

Navigation