Skip to main content

Advertisement

Log in

MicroRNA-21 in the Pathogenesis of Traumatic Brain Injury

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), an abundant class of small noncoding RNA molecules, which regulate gene expression by functioning as post-transcriptional regulatory factors, have been identified as key components of traumatic brain injury (TBI) progression. MicroRNA-21 (miR-21) is a recently identified typical miRNA that is involved in the signaling pathways of inflammation, neuronal apoptosis, reactive gliosis, disruption of blood brain barrier, angiogenesis and recovery process induced by physical exercises in TBI. Hence, miR-21 is now considered as a potential therapeutic target of TBI. We review the correlative literature and research progress regarding the roles of miR-21 in TBI in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chauhan NB (2014) Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci 32(2):337–365

    CAS  PubMed  Google Scholar 

  2. Menon DK et al (2010) Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil 91(11):1637–1640

    Article  PubMed  Google Scholar 

  3. Carrera E et al (2010) Spontaneous hyperventilation and brain tissue hypoxia in patients with severe brain injury. J Neurol Neurosurg Psychiatry 81(7):793–797

    Article  PubMed  Google Scholar 

  4. Baguley IJ et al (2012) Late mortality after severe traumatic brain injury in New South Wales: a multicentre study. Med J Aust 196(1):40–45

    Article  PubMed  Google Scholar 

  5. Wright DW et al (2014) Very early administration of progesterone for acute traumatic brain injury. N Engl J Med 371(26):2457–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Floyd CL, Lyeth BG (2007) Astroglia: important mediators of traumatic brain injury. Prog Brain Res 161:61–79

    Article  CAS  PubMed  Google Scholar 

  7. Sun D et al (2009) Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 216(1):56–65

    Article  CAS  PubMed  Google Scholar 

  8. Wong J et al (2005) Apoptosis and traumatic brain injury. Neurocrit Care 3(2):177–182

    Article  CAS  PubMed  Google Scholar 

  9. Ji W et al (2017) Up-regulation of MCM3 relates to neuronal apoptosis after traumatic brain injury in adult rats. Cell Mol Neurobiol 37(4):683–693

    Article  CAS  PubMed  Google Scholar 

  10. Dong H et al (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233

    Article  CAS  PubMed  Google Scholar 

  11. Londin E et al (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA 112(10):E1106–E1115

    Article  CAS  PubMed  Google Scholar 

  12. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lu J, Clark AG (2012) Impact of microRNA regulation on variation in human gene expression. Genome Res 22(7):1243–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krek A et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  CAS  PubMed  Google Scholar 

  15. Li MA, He L (2012) microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays 34(8):670–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gauthier BR, Wollheim CB (2006) MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat Med 12(1):36–38

    Article  CAS  PubMed  Google Scholar 

  17. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Article  CAS  PubMed  Google Scholar 

  18. Bi Y, Liu G, Yang R (2009) MicroRNAs: novel regulators during the immune response. J Cell Physiol 218(3):467–472

    Article  CAS  PubMed  Google Scholar 

  19. Chandran R et al (2017) Differential expression of microRNAs in the brains of mice subjected to increasing grade of mild traumatic brain injury. Brain Inj 31(1):106–119

    Article  PubMed  Google Scholar 

  20. Di Pietro V et al (2017) MicroRNAs as novel biomarkers for the diagnosis and prognosis of mild and severe traumatic brain injury. J Neurotrauma 34(11):1948–1956

    Article  PubMed  Google Scholar 

  21. Sabirzhanov B et al (2016) miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ 23(4):654–668

    Article  CAS  PubMed  Google Scholar 

  22. Gaudet AD et al (2017) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist 2017:1073858417721150

    Google Scholar 

  23. Si ML et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  24. Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9):735–739

    Article  CAS  PubMed  Google Scholar 

  25. Pan X, Wang ZX, Wang R (2010) MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther 10(12):1224–1232

    Article  CAS  PubMed  Google Scholar 

  26. Tagawa H, Ikeda S, Sawada K (2013) Role of microRNA in the pathogenesis of malignant lymphoma. Cancer Sci 104(7):801–809

    Article  CAS  PubMed  Google Scholar 

  27. Tan KS et al (2009) Expression profile of MicroRNAs in young stroke patients. PLoS ONE 4(11):e7689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39(3):959–966

    Article  CAS  PubMed  Google Scholar 

  29. Guo YB et al (2018) Effects of microRNA-21 on nerve cell regeneration and neural function recovery in diabetes mellitus combined with cerebral infarction rats by targeting PDCD4. Mol Neurobiol 55(3):2494–2505

    Article  CAS  PubMed  Google Scholar 

  30. Buller B et al (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277(20):4299–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou J, Zhang J (2014) Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction. Mol Med Rep 10(2):971–976

    Article  CAS  PubMed  Google Scholar 

  32. Yang CH et al (2014) MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem 289(36):25079–25087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sathyan P et al (2015) Mir-21-Sox2 axis delineates glioblastoma subtypes with prognostic impact. J Neurosci 35(45):15097–15112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hermansen SK et al (2016) miR-21 Is linked to glioma angiogenesis: a co-localization study. J Histochem Cytochem 64(2):138–148

    Article  CAS  PubMed  Google Scholar 

  35. Maachani UB et al (2016) Modulation of miR-21 signaling by MPS1 in human glioblastoma. Oncotarget 7(33):52912–52927

    Article  PubMed  Google Scholar 

  36. Han Z et al (2014) miR-21 alleviated apoptosis of cortical neurons through promoting PTEN-Akt signaling pathway in vitro after experimental traumatic brain injury. Brain Res 1582:12–20

    Article  CAS  PubMed  Google Scholar 

  37. Lei P et al (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284:191–201

    Article  CAS  PubMed  Google Scholar 

  38. Redell JB, Zhao J, Dash PK (2011) Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J Neurosci Res 89(2):212–221

    Article  CAS  PubMed  Google Scholar 

  39. Ge XT et al (2014) miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep 4:6718

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harrison EB et al (2016) Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation. FEBS Open Bio 6(8):835–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18(2):123–131

    Article  CAS  PubMed  Google Scholar 

  43. Kigerl KA et al (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu G, Abraham E (2013) MicroRNAs in immune response and macrophage polarization. Arterioscler Thromb Vasc Biol 33(2):170–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sheedy FJ (2015) Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol 6:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu TX, Munitz A, Rothenberg ME (2009) MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol 182(8):4994–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu TX et al (2011) MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol 187(6):3362–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murugaiyan G et al (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125(3):1069–1080

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sheedy FJ et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11(2):141–147

    Article  CAS  PubMed  Google Scholar 

  50. van den Bosch MW et al (2014) LPS induces the degradation of programmed cell death protein 4 (PDCD4) to release Twist2, activating c-Maf transcription to promote interleukin-10 production. J Biol Chem 289(33):22980–22990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnett RE et al (2016) Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis. J Leukoc Biol 99(2):361–371

    Article  CAS  PubMed  Google Scholar 

  52. Thum T et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984

    Article  CAS  PubMed  Google Scholar 

  53. Fenoglio C et al (2011) Expression and genetic analysis of miRNAs involved in CD4 + cell activation in patients with multiple sclerosis. Neurosci Lett 504(1):9–12

    Article  CAS  PubMed  Google Scholar 

  54. Sanders KA et al (2016) Next-generation sequencing reveals broad down-regulation of microRNAs in secondary progressive multiple sclerosis CD4 + T cells. Clin Epigenet 8(1):87

    Article  CAS  Google Scholar 

  55. Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31(12):596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang X et al (2005) Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 9(1):66–75

    Article  CAS  PubMed  Google Scholar 

  57. Wang G et al (2013) Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics 10(1):124–142

    Article  CAS  PubMed  Google Scholar 

  58. Hong Y et al (2014) Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3beta signaling pathway. PLoS ONE 9(4):e96212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zou C et al (2013) Activation of mitochondria-mediated apoptotic pathway in tri-ortho-cresyl phosphate-induced delayed neuropathy. Neurochem Int 62(7):965–972

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Junco-Clemente P, Golshani P (2014) PTEN: a master regulator of neuronal structure, function, and plasticity. Commun Integr Biol 7(1):e28358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang L et al (2012) miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60(12):1888–1895

    Article  PubMed  Google Scholar 

  62. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190

    Article  CAS  PubMed  Google Scholar 

  63. Liu L, Rudin M, Kozlova EN (2000) Glial cell proliferation in the spinal cord after dorsal rhizotomy or sciatic nerve transection in the adult rat. Exp Brain Res 131(1):64–73

    Article  CAS  PubMed  Google Scholar 

  64. Ridet JL et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20(12):570–577

    Article  CAS  PubMed  Google Scholar 

  65. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315

    Article  CAS  PubMed  Google Scholar 

  66. Bhalala OG et al (2012) microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci 32(50):17935–17947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Levin H, Smith D (2013) Traumatic brain injury: networks and neuropathology. Lancet Neurol 12(1):15–16

    Article  PubMed  PubMed Central  Google Scholar 

  68. Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19(12):1584–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ge X et al (2016) miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res 1650:31–40

    Article  CAS  PubMed  Google Scholar 

  70. Ge X et al (2015) MiR-21 alleviates secondary blood-brain barrier damage after traumatic brain injury in rats. Brain Res 1603:150–157

    Article  CAS  PubMed  Google Scholar 

  71. Siddiq I et al (2012) Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 29(17):2647–2659

    Article  PubMed  Google Scholar 

  72. Yin KJ, Hamblin M, Chen YE (2015) Angiogenesis-regulating microRNAs and ischemic stroke. Curr Vasc Pharmacol 13(3):352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krum JM, Khaibullina A (2003) Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 181(2):241–257

    Article  CAS  PubMed  Google Scholar 

  74. Skold MK et al (2005) VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 22(3):353–367

    Article  PubMed  Google Scholar 

  75. Lambert C, Cisternas P, Inestrosa NC (2016) Role of Wnt signaling in central nervous system injury. Mol Neurobiol 53(4):2297–2311

    Article  CAS  PubMed  Google Scholar 

  76. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104(4):442–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsai YH et al (2009) The M type K15 protein of Kaposi’s sarcoma-associated herpesvirus regulates microRNA expression via its SH2-binding motif to induce cell migration and invasion. J Virol 83(2):622–632

    Article  CAS  PubMed  Google Scholar 

  79. Liu LZ et al (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS ONE 6(4):e19139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Griesbach GS, Hovda DA, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bao TH et al (2014) Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury. J Mol Neurosci 54(4):622–629

    Article  CAS  PubMed  Google Scholar 

  82. Miao W et al (2015) Voluntary exercise prior to traumatic brain injury alters miRNA expression in the injured mouse cerebral cortex. Braz J Med Biol Res 48(5):433–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hu T et al (2015) miR21 is associated with the cognitive improvement following voluntary running wheel exercise in TBI mice. J Mol Neurosci 57(1):114–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81272791, 81502159), Jiangsu Young Medical Talents (QNRC2016190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfei Shao.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, W., Jiao, J., Cheng, C. et al. MicroRNA-21 in the Pathogenesis of Traumatic Brain Injury. Neurochem Res 43, 1863–1868 (2018). https://doi.org/10.1007/s11064-018-2602-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2602-z

Keywords

Navigation