Skip to main content

Advertisement

Log in

Neuropathological and Cognitive Effects Induced by CuO-NPs in Rats and Trials for Prevention Using Pomegranate Juice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles (CuO‐NPs) are extensively utilized in several industries and in pharmaceutical production. This excess exposure elevates the concern about its expected poisonous impacts on humans and animals. Pomegranate juice (PJ) is a natural source of polyphenols and exhibits potent antioxidant activities. Our experiment intended to explore the neurobehavioral and toxicopathological impacts of CuO-NPs and to explain the mechanistic role of PJ to reduce their toxicity. Thirty Wistar albino rats received the subsequent materials through oral gavage, every day for 28d: (1) normal saline, (2) 3 mL/kg bwt PJ, (3) 6 mL/kg bwt PJ, (4) 300 mg/kg bwt CuO-NPs, (5) CuO-NPs + 3 mL/kg bwt PJ, (6) CuO-NPs + 6 mL/kg bwt PJ. Continuous exposure to CuO-NPs caused a significant elevation of MDA levels and reduction of total antioxidant capacity associated with remarkable pathological alterations in all brain regions including cerebrum, hippocampus and cerebellum. Progressive decline of memory along with cognitive and psychiatric disturbances were observed in rats exposed to CuO-NPs not in PJ co-treated rats. Continuous exposure to CuO-NPs caused over expression of the immunohistochemical markers of caspase-3, iNOS and GFAP altogether with DAN fragmentation and down-regulation of HO-1 and Nrf2 gene in the whole brain tissues. Conversely, rats co-treated with PJ showed dose dependent improvements in the entire toxicological, behavioral, and pathological parameters. We showed that PJ had the ability to reduce the oxidative stress damage via up-regulation of HO-1 and Nrf2 genes in the brain. So that PJ had the ability to protect the brain and DNA from further damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available on request.

References

  1. Hsu H-W, Bondy SC, Kitazawa M (2018) Environmental and dietary exposure to copper and its cellular mechanisms linking to Alzheimer’s disease. Toxicol Sci 163(2):338–345. https://doi.org/10.1093/toxsci/kfy025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Genoud S, Roberts BR, Gunn AP et al (2017) Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics 9(10):1447–1455. https://doi.org/10.1039/C7MT00244K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Orringer DA, Koo Y, Chen T, Kopelman R, Sagher O, Philbert M (2009) Small solutions for big problems: the application of nanoparticles to brain tumor diagnosis and therapy. Clin Pharmacol Ther 85(5):531–534. https://doi.org/10.1038/clpt.2008.296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mushtaq G, Khan J, Joseph E, Kamal M (2015) Nanoparticles, neurotoxicity and neurodegenerative diseases. Curr Drug Metab 16(8):676–684. https://doi.org/10.2174/1389200216666150812122302

    Article  CAS  PubMed  Google Scholar 

  5. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7(1):22. https://doi.org/10.1186/1743-8977-7-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao J, Castranova V (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B 14(8):593–632. https://doi.org/10.1080/10937404.2011.615113

    Article  CAS  Google Scholar 

  7. Lewińska-Preis L, Jabłońska M, Fabiańska MJ, Kita A (2011) Bioelements and mineral matter in human livers from the highly industrialized region of the Upper Silesia Coal Basin (Poland). Environ Geochem Health 33(6):595–611. https://doi.org/10.1007/s10653-011-9373-7

    Article  CAS  PubMed  Google Scholar 

  8. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57. https://doi.org/10.1016/j.pneurobio.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  9. Bulcke F, Dringen R, Scheiber IF (2017) Neurotoxicity of copper. Bulcker F(eds) Neurotoxicity of Metals. Springer, New York, pp 313–343

    Chapter  Google Scholar 

  10. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–216. https://doi.org/10.1136/oem.58.3.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Donaldson K, Stone V, Seaton A, MacNee W (2001) Ambient particle inhalation and the cardiovascular system: potential mechanisms. Environ Health Perspect 109(suppl 4):523–527. https://doi.org/10.1289/ehp.01109s4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY (2019) Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomed 14:4723–4739. https://doi.org/10.2147/IJN.S207644

    Article  CAS  Google Scholar 

  13. Medina C, Santos-Martinez M, Radomski A, Corrigan O, Radomski M (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558. https://doi.org/10.1038/sj.bjp.0707130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Linkov I, Satterstrom FK, Corey LM (2008) Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine 4(2):167–171. https://doi.org/10.1016/j.nano.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  15. Barrabés N, Just J, Dafinov A et al (2006) Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles. Appl Catal B 62(1–2):77–85. https://doi.org/10.1016/j.apcatb.2005.06.015

    Article  CAS  Google Scholar 

  16. Zhang X, Dong X, Huang H, Wang D, Lv B, Lei J (2007) High permittivity from defective carbon-coated Cu nanocapsules. Nanotechnology 18(27):275701. https://doi.org/10.1088/0957-4484/18/27/275701

    Article  CAS  Google Scholar 

  17. Gutierrez ER, Kamens RM, Tolocka M, Sexton K, Jaspers I (2015) A comparison of three dispersion media on the physicochemical and toxicological behavior of TiO2 and NiO nanoparticles. Chem Biol Interact 236:74–81. https://doi.org/10.1016/j.cbi.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Amri Z, Ghorbel A, Turki M et al (2017) Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model. BMC Complement Altern Med 17(1):339. https://doi.org/10.1186/s12906-017-1842-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Devore EE, Grodstein F, van Rooij FJ et al (2010) Dietary antioxidants and long-term risk of dementia. Arch Neurol 67(7):819–825. https://doi.org/10.1001/archneurol.2010.144

    Article  PubMed  PubMed Central  Google Scholar 

  20. Calabrese V, Cornelius C, Mancuso C et al (2009) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci 14:376–397. https://doi.org/10.2741/3250

    Article  CAS  Google Scholar 

  21. Fahmy H, Hegazi N, El-Shamy S, Farag MA (2020) Pomegranate juice as a functional food: a comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct 11(7):5768–5781. https://doi.org/10.1039/D0FO01251C

    Article  CAS  PubMed  Google Scholar 

  22. Aviram M, Volkova N, Coleman R et al (2008) Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: studies in vivo in atherosclerotic apolipoprotein E-deficient (E0) mice and in vitro in cultured macrophages and lipoproteins. J Agri Food Chem 56(3):1148–1157. https://doi.org/10.1021/jf071811q

    Article  CAS  Google Scholar 

  23. Bookheimer SY, Renner BA, Ekstrom A et al (2013) Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. J Evid Based Complementary Altern Med. https://doi.org/10.1155/2013/946298

    Article  Google Scholar 

  24. Luna IZ, Hilary LN, Chowdhury AMS, Gafur MA, Khan N, Khan RA (2015) Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Oa Lib J 2(03):1. https://doi.org/10.4236/oalib.1101409

    Article  Google Scholar 

  25. Hassanen EI, Tohamy A, Issa MY, Ibrahim MA, Farroh KY, Hassan A (2019) Pomegranate Juice Diminishes The Mitochondria-Dependent Cell Death And NF-kB Signaling Pathway Induced By Copper Oxide Nanoparticles On Liver And Kidneys Of Rats. Int J Nanomed 14:8905. https://doi.org/10.2147/IJN.S229461

    Article  CAS  Google Scholar 

  26. Attard E (2013) A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci 8(1):48–53. https://doi.org/10.2478/s11535-012-0107-3

    Article  CAS  Google Scholar 

  27. Hmid I, Elothmani D, Hanine H, Oukabli A, Mehinagic E (2017) Comparative study of phenolic compounds and their antioxidant attributes of eighteen pomegranate (Punica granatum L.) cultivars grown in Morocco. Arab J Chem 10:S2675–S2684. https://doi.org/10.1016/j.arabjc.2013.10.011

    Article  CAS  Google Scholar 

  28. Bugata LSP, Pitta Venkata P, Gundu AR et al (2019) Acute and subacute oral toxicity of copper oxide nanoparticles in female albino Wistar rats. J Appl Toxicol 39(5):702–716. https://doi.org/10.1002/jat.3760

    Article  CAS  PubMed  Google Scholar 

  29. Frye CA, Walf AA (2002) Changes in progesterone metabolites in the hippocampus can modulate open field and forced swim test behavior of proestrous rats. Horm Behav 41(3):306–315. https://doi.org/10.1006/hbeh.2002.1763

    Article  CAS  PubMed  Google Scholar 

  30. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328. https://doi.org/10.1038/nprot.2007.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rasoulijazi H, Joghataei M, Noubakht M, Roughani M (2007) The beneficial effect of (-)-epigallocatechin-3-gallate in an experimental model of Alzheimer’s disease in rat: A behavioral analysis. Iran Biomed J 11(4):237–243

    Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  Google Scholar 

  33. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V (2001) Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 54(5):356–361. https://doi.org/10.1136/jcp.54.5.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morgan AM, Ibrahim MA, Noshy PA (2017) Reproductive toxicity provoked by titanium dioxide nanoparticles and the ameliorative role of Tiron in adult male rats. Biochem Biophys Res Commun 486(2):595–600. https://doi.org/10.1016/j.bbrc.2017.03.098

    Article  CAS  PubMed  Google Scholar 

  35. Ibrahim MA, Radwan MI, Kim HK, Han J, Warda M (2020) Evaluation of global expression of selected genes as potential candidates for internal normalizing control during transcriptome analysis in dromedary camel (Camelus dromedarius). Small Rumin Res 184:106050. https://doi.org/10.1016/j.smallrumres.2020.106050

    Article  Google Scholar 

  36. Khalaf A, Ahmed W, Moselhy W, Abdel-Halim B, Ibrahim M (2019) Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Human Exp Toxicol 38(4):398–408. https://doi.org/10.1177/0960327118816134

    Article  CAS  Google Scholar 

  37. Ibrahim MA, Ibrahem MD (2020) Acrylamide-induced hematotoxicity, oxidative stress, and DNA damage in liver, kidney, and brain of catfish (Clarias gariepinus). Environ Toxicol 35(2):300–308. https://doi.org/10.1002/tox.22863

    Article  CAS  PubMed  Google Scholar 

  38. Bancroft J, Gamble M (2013) Theory and practice of histological techniques. In: Bancroft J (ed) Churchill Livingstone. Elsevier, Oxford

    Google Scholar 

  39. Noshy PA, Elhady MA, Khalaf AAA, Kamel MM, Hassanen EI (2018) Ameliorative effect of carvacrol against propiconazole-induced neurobehavioral toxicity in rats. Neurotoxicology 67:141–149. https://doi.org/10.1016/j.neuro.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  40. Khalaf AA, Hassanen EI, Ibrahim MA et al (2020) Rosmarinic acid attenuates chromium-induced hepatic and renal oxidative damage and DNA damage in rats. J Biochem Mol Toxicol 34(11):e22579. https://doi.org/10.1002/jbt.22579

    Article  CAS  PubMed  Google Scholar 

  41. Akalın AC, Bayram M, Anlı RE (2018) Antioxidant phenolic compounds of pomegranate wines produced by different maceration methods. J Inst Brew 124(1):38–44. https://doi.org/10.1002/jib.468

    Article  CAS  Google Scholar 

  42. Giraldi A, Marson L, Nappi R et al (2004) Physiology of female sexual function: animal models. J Sex Med 1(3):237–253. https://doi.org/10.1111/j.1743-6109.04037.x

    Article  CAS  PubMed  Google Scholar 

  43. Ågmo A, Turi AL, Ellingsen E, Kaspersen H (2004) Preclinical models of sexual desire: conceptual and behavioral analyses. Pharmacol Biochem Behav 78(3):379–404. https://doi.org/10.1016/j.pbb.2004.04.013

    Article  CAS  PubMed  Google Scholar 

  44. Yankelevitch-Yahav R, Franko M, Huly A, Doron R (2015) The forced swim test as a model of depressive-like behavior. JoVE 97:e52587. https://doi.org/10.3791/52587

    Article  Google Scholar 

  45. Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. JoVE 22:e1088. https://doi.org/10.3791/1088

    Article  Google Scholar 

  46. Cryan JF, Valentino RJ, Lucki I (2005) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29(4–5):547–569. https://doi.org/10.1016/j.neubiorev.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  47. Carobrez A, Bertoglio L (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29(8):1193–1205. https://doi.org/10.1016/j.neubiorev.2005.04.017

    Article  CAS  PubMed  Google Scholar 

  48. Ognibene E, Middei S, Daniele S et al (2005) Aspects of spatial memory and behavioral disinhibition in Tg2576 transgenic mice as a model of Alzheimer’s disease. Behav Brain Res 156(2):225–232. https://doi.org/10.1016/j.bbr.2004.05.028

    Article  CAS  PubMed  Google Scholar 

  49. Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AM (2016) A comprehensive behavioral test battery to assess learning and memory in 129S6/Tg2576 mice. PLoS ONE 11(1):e0147733. https://doi.org/10.1371/journal.pone.0147733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ouni S, Askri D, Jeljeli M, Abdelmalek H, Sakly M, Amara S (2020) Toxicity and effects of copper oxide nanoparticles on cognitive performances in rats. Arch Environ Occup Health 75(7):384–394. https://doi.org/10.1080/19338244.2019.1689376

    Article  CAS  PubMed  Google Scholar 

  51. Sharma HS, Ali SF, Hussain SM, Schlager JJ, Sharma A (2009) Influence of engineered nanoparticles from metals on the blood-brain barrier permeability, cerebral blood flow, brain edema and neurotoxicity. An experimental study in the rat and mice using biochemical and morphological approaches. J Nanosci 9(8):5055–5072. https://doi.org/10.1166/jnn.2009.GR09

    Article  CAS  Google Scholar 

  52. Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23(7):1365–1371. https://doi.org/10.1016/j.tiv.2009.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perreault F, Melegari SP, da Costa CH, Rossetto ALdOF, Popovic R, Matias WG (2012) Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ 441:117–124. https://doi.org/10.1016/j.scitotenv.2012.09.065

    Article  CAS  PubMed  Google Scholar 

  54. Hassanen EI, Morsy EA, Hussien AM, Ibrahim MA, Farroh KY (2020) The effect of different concentrations of gold nanoparticles on growth performance, toxicopathological and immunological parameters of broiler chickens. Biosci Rep. https://doi.org/10.1042/BSR20194296

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9(1):9. https://doi.org/10.1186/1477-3155-9-9

    Article  CAS  Google Scholar 

  56. Quamar S, Kumar J, Mishra A, Flora S (2019) Oxidative stress and neurobehavioural changes in rats following copper exposure and their response to MiADMSA and d-penicillamine. Toxicol Res Appl 3:1–15. https://doi.org/10.1177/2397847319844782

    Article  CAS  Google Scholar 

  57. Khalaf A, Hassanen EI, Azouz RA et al (2019) Ameliorative effect of zinc oxide nanoparticles against dermal toxicity induced by lead oxide in rats. Int J Nanomed 14:7729–7741. https://doi.org/10.2147/IJN.S220572

    Article  CAS  Google Scholar 

  58. Azouz RA, Hassanen EI (2020) Modulating Effect of Gum Arabic on Cisplatin-induced Testicular Damage in Albino Wister Rats. Rev Bras Farmacogn. https://doi.org/10.1007/s43450-020-00015-7

    Article  Google Scholar 

  59. Jänicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273(16):9357–9360

    Article  Google Scholar 

  60. Fuentes-Prior P, Salvesen GS (2004) The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 384(2):201–232. https://doi.org/10.1042/BJ20041142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Yu G, Liu L et al (2019) Rosiglitazone attenuates cell apoptosis through antioxidative and anti-apoptotic pathways in the hippocampi of spontaneously hypertensive rats. Int J Mol Med 43(2):693–700. https://doi.org/10.3892/ijmm.2018.3991

    Article  CAS  PubMed  Google Scholar 

  62. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saijo K, Winner B, Carson CT et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59. https://doi.org/10.1016/j.cell.2009.01.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma D, Jin S, Li E et al (2013) The neurotoxic effect of astrocytes activated with toll-like receptor ligands. J Neuroimmunol 254(1–2):10–18. https://doi.org/10.1016/j.jneuroim.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  65. Sreekumar S, Sithul H, Muraleedharan P, Azeez JM, Sreeharshan S (2014) Pomegranate fruit as a rich source of biologically active compounds. BioMed Res Int. https://doi.org/10.1155/2014/686921

    Article  PubMed  PubMed Central  Google Scholar 

  66. Akhavan H, Barzegar M, Weidlich H, Zimmermann BF (2015) Phenolic compounds and antioxidant activity of juices from ten Iranian pomegranate cultivars depend on extraction. J Chem. https://doi.org/10.1155/2015/907101

    Article  Google Scholar 

  67. Souleman AM, Ibrahim GE (2016) Evaluation of Egyptian pomegranate cultivars for antioxidant activity, phenolic and flavonoid contents. Egypt Pharmaceut J 15(3):143. https://doi.org/10.4103/1687-4315.197582

    Article  Google Scholar 

  68. Vegara S, Martí N, Lorente J et al (2014) Chemical guide parameters for Punica granatum cv.‘Mollar’fruit juices processed at industrial scale. Food Chem 147:203–208. https://doi.org/10.1016/j.foodchem.2013.09.122

    Article  CAS  PubMed  Google Scholar 

  69. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H (2001) Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci 98(18):10350–10355. https://doi.org/10.1073/pnas.171326098

    Article  CAS  PubMed  Google Scholar 

  70. Ginsberg Y, Khatib N, Saadi N, Ross MG, Weiner Z, Beloosesky R (2018) Maternal pomegranate juice attenuates maternal inflammation–induced fetal brain injury by inhibition of apoptosis, neuronal nitric oxide synthase, and NF-κB in a rat model. Am J Obstetric Gynecol. https://doi.org/10.1016/j.ajog.2018.04.040

    Article  Google Scholar 

  71. West T, Atzeva M, Holtzman DM (2007) Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury. Dev Neurosci 29(4–5):363–372. https://doi.org/10.1159/000105477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loren DJ, Seeram NP, Schulman RN, Holtzman DM (2005) Maternal dietary supplementation with pomegranate juice is neuroprotective in an animal model of neonatal hypoxic-ischemic brain injury. Pediatr Res 57(6):858–864. https://doi.org/10.1203/01.PDR.0000157722.07810.15

    Article  CAS  PubMed  Google Scholar 

  73. Ahmed MA, El Morsy EM, Ahmed AA (2014) Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life Sci 110(2):61–69. https://doi.org/10.1016/j.lfs.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  74. Yuan T, Ma H, Liu W et al (2016) Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 7(1):26–33. https://doi.org/10.1021/acschemneuro.5b00260

    Article  CAS  PubMed  Google Scholar 

  75. Hartman RE, Shah A, Fagan AM et al (2006) Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer’s disease. Neurobiol Dis 24(3):506–515. https://doi.org/10.1016/j.nbd.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  76. Jahromy MH, Shariatifar A, Samiee S, Vaziri M, Shahraki MB, Dara SM (2014) Involvement of Serotonergic System and Magnesium on Anxiolytic Effects of Pomegranate in Male Mice. World J Neurosci. https://doi.org/10.4236/wjns.2014.44032

    Article  Google Scholar 

Download references

Funding

This research didn’t receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman I. Hassanen.

Ethics declarations

Conflict of interest

No competing interests declared.

Ethical Approval

All Institutional and National Guidelines for the care and use of animals (fisheries) were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanen, E.I., Ibrahim, M.A., Hassan, A.M. et al. Neuropathological and Cognitive Effects Induced by CuO-NPs in Rats and Trials for Prevention Using Pomegranate Juice. Neurochem Res 46, 1264–1279 (2021). https://doi.org/10.1007/s11064-021-03264-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03264-7

Keywords

Navigation