Skip to main content

Advertisement

Log in

Kynurenine Metabolism and Alzheimer’s Disease: The Potential Targets and Approaches

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

l-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson’s disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Zhang S, Sakuma M, Deora GS et al (2019) A brain-permeable inhibitor of the neurodegenerative disease target kynurenine 3-monooxygenase prevents accumulation of neurotoxic metabolites. Commun Biol 2(1):1–10. https://doi.org/10.1038/s42003-019-0520-5

    Article  CAS  Google Scholar 

  2. Feigin VL, Abajobir AA, Abate KH et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897. https://doi.org/10.1016/S1474-4422(17)30299-5

    Article  Google Scholar 

  3. Mihevc PS, Majdič G (2019) Canine cognitive dysfunction and Alzheimer’s disease–two facets of the same disease? Front Neurosci 13:604. https://doi.org/10.3389/fnins.2019.00604

    Article  Google Scholar 

  4. Maddison DC, Giorgini F (2015) The kynurenine pathway and neurodegenerative disease. Semin Cell Dev Biol 40:134–141. https://doi.org/10.1016/j.semcdb.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  5. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Török N, Tanaka M, Vécsei L (2020) Searching for peripheral biomarkers in neurodegenerative diseases: the tryptophan-kynurenine metabolic pathway. Int J Mol Sci 21(24):9338. https://doi.org/10.3390/ijms21249338

    Article  CAS  PubMed Central  Google Scholar 

  7. Sharma VK, Mehta V, Singh TG (2020) Alzheimer’s disorder: epigenetic connection and associated risk factors. Curr Neuropharm 18(8):740–753. https://doi.org/10.2174/1570159X18666200128125641

    Article  CAS  Google Scholar 

  8. Sharma VK, Singh TG (2020) Navigating Alzheimer’s disease via chronic stress: the role of glucocorticoids. Curr Drug Target 21(5):433–444. https://doi.org/10.2174/1389450120666191017114735

    Article  CAS  Google Scholar 

  9. Sharma V, Kaur A, Singh TG (2020) Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother 129:110373. https://doi.org/10.1016/j.biopha.2020.110373

    Article  CAS  PubMed  Google Scholar 

  10. Sharma VK, Singh TG (2020) Insulin resistance and bioenergetic manifestations: targets and approaches in Alzheimer’s disease. Life Sci 262:118401. https://doi.org/10.1016/j.lfs.2020.118401

    Article  CAS  PubMed  Google Scholar 

  11. Pérez-De La Cruz V, Königsberg M, Santamaría A (2007) Kynurenine pathway and disease: an overview. CNS Neurol Disord Drug Targets 6(6):398–410. https://doi.org/10.2174/187152707783399229

    Article  PubMed  Google Scholar 

  12. Palego L, Betti L, Rossi A et al (2016) Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids 2016:8952520. https://doi.org/10.1155/2016/8952520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma VK, Singh TG (2020) CREB: a multifaceted target for Alzheimer’s disease. Curr Alzheimer Res 17(14):1280–1293. https://doi.org/10.2174/1567205018666210218152253

    Article  CAS  PubMed  Google Scholar 

  14. Parrott JM, Redus L, O’Connor JC (2016) Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J Neuroinflamm 13:124. https://doi.org/10.1186/s12974-016-0590-y

    Article  CAS  Google Scholar 

  15. Sharma VK, Singh TG (2020) Chronic stress and diabetes mellitus: interwoven pathologies. Curr Diabetes Rev 16(6):546–556. https://doi.org/10.2174/1573399815666191111152248

    Article  CAS  PubMed  Google Scholar 

  16. Badawy AAB (2019) Tryptophan metabolism: a versatile area providing multiple targets for pharmacological intervention. Egypt J Basic Clin Pharmacol. https://doi.org/10.32527/2019/101415

    Article  PubMed  PubMed Central  Google Scholar 

  17. Solvang SEH, Nordrehaug JE, Tell GS et al (2019) The kynurenine pathway and cognitive performance in community-dwelling older adults. The Hordaland Health Study. Brain Behav Immun 75:155–162. https://doi.org/10.1016/j.bbi.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Lyketsos CG, Lopez O, Jones B et al (2002) Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA 288(12):1475–1483. https://doi.org/10.1016/j.bbi.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  19. Fukui S, Schwarcz R, Rapoport SI et al (1991) Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007–2017. https://doi.org/10.1111/j.1471-4159.1991.tb03460.x

    Article  CAS  PubMed  Google Scholar 

  20. Höglund E, Øverli Ø, Winberg S (2019) Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front Endocrinol 10:158. https://doi.org/10.3389/fendo.2019.00158

    Article  Google Scholar 

  21. Davis I, Liu A (2015) What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurother 15(7):719–721. https://doi.org/10.1586/14737175.2015.1049999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanaka M, Toldi J, Vécsei L (2020) Exploring the etiological links behind neurodegenerative diseases: inflammatory cytokines and bioactive kynurenines. Int J Mol Sci 21:2431. https://doi.org/10.3390/ijms21072431

    Article  CAS  PubMed Central  Google Scholar 

  23. Costantino G (2009) New promises for manipulation of kynurenine pathway in cancer and neurological diseases. Expert Opin Ther Targets 13(2):247–258. https://doi.org/10.1517/14728220802665734

    Article  CAS  PubMed  Google Scholar 

  24. Van der Leek AP, Yanishevsky Y, Kozyrskyj AL (2017) The kynurenine pathway as a novel link between allergy and the gut microbiome. Front Immunol 8:1374. https://doi.org/10.3389/fimmu.2017.01374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oxenkrug G (2013) Insulin resistance and dysregulation of tryptophan–kynurenine and kynurenine–nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol 48(2):294–301. https://doi.org/10.1007/s12035-013-8497-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24(5):242–248. https://doi.org/10.1016/s1471-4906(03)00072-3

    Article  CAS  PubMed  Google Scholar 

  27. Frumento G, Rotondo R, Tonetti M (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2, 3-dioxygenase. J Exp Med 196(4):459–468. https://doi.org/10.1084/jem.20020121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braidy N, Grant R (2017) Kynurenine pathway metabolism and neuroinflammatory disease. Neural Regen Res 12(1):39. https://doi.org/10.4103/1673-5374.198971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res. https://doi.org/10.1177/1178646917691938

    Article  PubMed  PubMed Central  Google Scholar 

  30. Giil LM, Midttun Ø, Refsum H et al (2017) Kynurenine pathway metabolites in Alzheimer’s disease. J Alzheimers Dis 60(2):495–504. https://doi.org/10.3233/JAD-170485

    Article  CAS  PubMed  Google Scholar 

  31. Widner B, Leblhuber F, Walli J et al (2000) Tryptophan degradation and immune activation in Alzheimer’s disease. J Neural Transm Suppl 107(3):343–353. https://doi.org/10.1007/s007020050029

    Article  CAS  Google Scholar 

  32. Baran H, Jellinger K, Deecke L (1999) Kynurenine metabolism in Alzheimer’s disease. J Neural Transm Suppl 106(2):165–181. https://doi.org/10.1007/s007020050149

    Article  CAS  Google Scholar 

  33. Tanaka M, Bohár Z, Vécsei L (2020) Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism. Molecules 25(3):564. https://doi.org/10.3390/molecules25030564

    Article  CAS  PubMed Central  Google Scholar 

  34. Guillemin GJ, Brew BJ (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep 7(4):199–206. https://doi.org/10.1179/135100002125000550

    Article  CAS  PubMed  Google Scholar 

  35. Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. https://doi.org/10.1126/science.aaf9794

    Article  PubMed  Google Scholar 

  36. Chobot V, Hadacek F, Bachmann G et al (2018) Antioxidant properties and the formation of iron coordination complexes of 8-hydroxyquinoline. Int J Mol Sci 19(12):3917. https://doi.org/10.3390/ijms19123917

    Article  CAS  PubMed Central  Google Scholar 

  37. Guillemin GJ, Smith DG, Smythe GA et al (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112. https://doi.org/10.1007/978-1-4615-0135-0_12

    Article  CAS  PubMed  Google Scholar 

  38. O’Farrell K, Harkin A (2017) Stress-related regulation of the kynurenine pathway: relevance to neuropsychiatric and degenerative disorders. Neuropharmacology 112(Pt B):307–323. https://doi.org/10.1016/j.neuropharm.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  39. Gyawali A, Kang YS (2021) Pretreatment effect of inflammatory stimuli and characteristics of tryptophan transport on brain capillary endothelial (TR-BBB) and motor neuron like (NSC-34) cell lines. Biomedicines 9(1):9. https://doi.org/10.3390/biomedicines9010009

    Article  CAS  Google Scholar 

  40. Lovelace MD, Varney B, Sundaram G et al (2017) Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacol 112:373–388. https://doi.org/10.1016/j.neuropharm.2016.03.024

    Article  CAS  Google Scholar 

  41. Chatterjee P, Zetterberg H, Goozee K et al (2019) Plasma neurofilament light chain and amyloid-β are associated with the kynurenine pathway metabolites in pre-clinical Alzheimer’s disease. J Neuroinflamm 16(1):1–12. https://doi.org/10.1186/s12974-019-1567-4

    Article  Google Scholar 

  42. Tan VX, Guillemin GJ (2019) Kynurenine pathway metabolites as biomarkers for amyotrophic lateral sclerosis. Front Neurosci 13:1013. https://doi.org/10.3389/fnins.2019.01013

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chouraki V, Preis SR, Yang Q (2017) Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham Study. Alzheimer Dement 13(12):1327–1336. https://doi.org/10.1016/j.jalz.2017.04.009

    Article  Google Scholar 

  44. Hartai Z, Juhász A, Rimanóczy Á et al (2007) Decreased serum and red blood cell kynurenic acid levels in Alzheimer’s disease. Neurochem Int 50(2):308–313. https://doi.org/10.1016/j.neuint.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  45. Gulaj E, Pawlak K, Bien B et al (2010) Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 55(2):204–211. https://doi.org/10.2478/v10039-010-0023-6

    Article  CAS  PubMed  Google Scholar 

  46. Van Gool AR, Verkerk R, Fekkes D et al (2008) Neurotoxic and neuroprotective metabolites of kynurenine in patients with renal cell carcinoma treated with interferon-α: course and relationship with psychiatric status: Interferon-α and kynurenine metabolites. Psychiatry Clin Neurosci 62(5):597–602. https://doi.org/10.1111/j.1440-1819.2008.01854.x

    Article  CAS  PubMed  Google Scholar 

  47. Fernstrom JD (2013) Large neutral amino acids: dietary effects on brain neurochemistry and function. Amino Acids 45(3):419–430. https://doi.org/10.1007/s00726-012-1330-y

    Article  CAS  PubMed  Google Scholar 

  48. Hafstad Solvang SE, Nordrehaug JE, Aarsland D et al (2019) Kynurenines, neuropsychiatric symptoms, and cognitive prognosis in patients with mild dementia. Int J Tryptophan Res 12:1178646919877883. https://doi.org/10.1177/1178646919877883

    Article  Google Scholar 

  49. Sorgdrager FJ, Naudé PJ, Kema IP (2019) Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Front Immunol 10:2565. https://doi.org/10.3389/fimmu.2019.02565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharma VK, Singh TG, Mehta V (2021) Stressed mitochondria: a target to intrude Alzheimer’s disease. Mitochondrion 59:48–57. https://doi.org/10.1016/j.mito.2021.04.004

    Article  CAS  PubMed  Google Scholar 

  51. Chatterjee P, Goozee K, Lim CK et al (2018) Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: a pilot study. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-25968-7

    Article  CAS  Google Scholar 

  52. Németh H, Toldi J, Vécsei L (2005) Role of kynurenines in the central and peripherial nervous systems. Curr Neurovasc Res 2(3):249–260. https://doi.org/10.2174/1567202054368326

    Article  PubMed  Google Scholar 

  53. Bordelon YM, Chesselet MF, Nelson D et al (1997) Energetic dysfunction in quinolinic acid lesioned rat striatum. J Neurochem 69(4):1629–1639. https://doi.org/10.1046/j.1471-4159.1997.69041629.x

    Article  CAS  PubMed  Google Scholar 

  54. Kerr SJ, Armati PJ, Guillemin GJ et al (1998) Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS 12(4):355–363. https://doi.org/10.1097/00002030-199804000-00003

    Article  CAS  PubMed  Google Scholar 

  55. Guillemin GJ, Brew BJ, Noonan CE (2005) Indoleamine 2, 3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol Appl Neurobiol 31(4):395–404. https://doi.org/10.1111/j.1365-2990.2005.00655.x

    Article  CAS  PubMed  Google Scholar 

  56. Singh T, Goel RK (2021) Epilepsy associated depression: an update on current scenario, suggested mechanisms, and opportunities. Neurochem Res 46(6):1305–1321. https://doi.org/10.1007/s11064-021-03274-5

    Article  CAS  PubMed  Google Scholar 

  57. Kaur N, Singh T, Kumar S, Goel RK (2017) Neurochemical evidence based suggested therapy for safe management of epileptogenesis. Epilepsy Behav 72:8–16. https://doi.org/10.1016/j.yebeh.2017.04.004

    Article  PubMed  Google Scholar 

  58. Singh T, Bagga N, Kaur A et al (2017) Agmatine for combined treatment of epilepsy, depression and cognitive impairment in chronic epileptic animals. Biomed Pharmacother 92:720–725. https://doi.org/10.1016/j.biopha.2017.05.085

    Article  CAS  PubMed  Google Scholar 

  59. Singh T, Goel RK (2017) Managing epilepsy-associated depression: serotonin enhancers or serotonin producers? Epilepsy Behav 66:93–99. https://doi.org/10.1016/j.yebeh.2016.10.007

    Article  PubMed  Google Scholar 

  60. Braidy N, Guillemin GJ, Mansour H et al (2011) Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. FEBS J 278(22):4425–4434. https://doi.org/10.1111/j.1742-4658.2011.08366.x

    Article  CAS  PubMed  Google Scholar 

  61. Whetsell WO Jr, Schwarcz R (1983) The organotypic tissue culture model of corticostriatal system used for examining amino acid neurotoxicity and its antagonism: studies on kainic acid, quinolinic acid and (-) 2-amino-7-phosphonoheptanoic acid. J Neural Transm Suppl 19:53–63

    CAS  PubMed  Google Scholar 

  62. Stone TW, Mackay GM, Forrest CM et al (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41(7):852–859. https://doi.org/10.1515/CCLM.2003.129

    Article  CAS  PubMed  Google Scholar 

  63. Rahman A, Ting K, Cullen KM et al (2009) The excitotoxin quinolinic acid induces tau phosphorylation in human neurons. PLoS ONE 4(7):e6344. https://doi.org/10.1371/journal.pone.0006344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Boegman RJ, El-Defrawy SR, Jhamandas K et al (1985) Quinolinic acid neurotoxicity in the nucleus basalis antagonized by kynurenic acid. Neurobiol Aging 6(4):331–336. https://doi.org/10.1016/0197-4580(85)90012-0

    Article  CAS  PubMed  Google Scholar 

  65. Misztal M, Skangiel-Kramska J, Niewiadomska G et al (1996) Subchronic intraventricular infusion of quinolinic acid produces working memory impairment—a model of progressive excitotoxicity. Neuropharmacology 35(4):449–458. https://doi.org/10.1016/0028-3908(96)00005-6

    Article  CAS  PubMed  Google Scholar 

  66. Schwarz MJ, Guillemin GJ, Teipel SJ (2013) Increased 3-hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur Arch Psychiatry Clin Neurosci 263(4):345–352. https://doi.org/10.1007/s00406-012-0384-x

    Article  PubMed  Google Scholar 

  67. Maitre M, Klein C, Patte-Mensah C et al (2020) Tryptophan metabolites modify brain Aβ peptide degradation: a role in Alzheimer’s disease? Prog Neurobiol 190:101800. https://doi.org/10.1016/j.pneurobio.2020.101800

    Article  CAS  PubMed  Google Scholar 

  68. Huang YS, Ogbechi J, Clanchy FI et al (2020) IDO and kynurenine metabolites in peripheral and CNS disorders. Front Immunol. https://doi.org/10.3389/fimmu.2020.00388

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boegman RJ, Jhamandas K, Beninger RJ (1990) Neurotoxicity of tryptophan metabolites. Ann N Y Acad Sci 85:261–273. https://doi.org/10.1111/j.1749-6632.1990.tb28059.x

    Article  Google Scholar 

  70. Freese A, Swartz KJ, During MJ et al (1990) Kynurenine metabolites of tryptophan: implications for neurologic diseases. Neurology 40(4):691–691. https://doi.org/10.1212/wnl.40.4.691

    Article  CAS  PubMed  Google Scholar 

  71. Sapko MT, Guidetti P, Yu P et al (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington’s disease. Exp Neurol 197(1):31–40. https://doi.org/10.1016/j.expneurol.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  72. Vamos E, Pardutz A, Klivenyi P et al (2009) The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 283(1–2):21–27. https://doi.org/10.1016/j.jns.2009.02.326

    Article  CAS  PubMed  Google Scholar 

  73. González-Sánchez M, Jiménez J, Narváez A et al (2020) Kynurenic acid levels are increased in the CSF of Alzheimer’s disease patients. Biomolecules 10(4):571. https://doi.org/10.3390/biom10040571

    Article  CAS  PubMed Central  Google Scholar 

  74. Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D et al (2014) Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. Oxid Med Cell Longev 2014:646909. https://doi.org/10.1155/2014/646909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhat A, Pires AS, Tan V et al (2020) Effects of sleep deprivation on the tryptophan metabolism. Int J Tryptophan Res. https://doi.org/10.1177/1178646920970902

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rossi F, Miggiano R, Ferraris DM et al (2019) The synthesis of kynurenic acid in mammals: an updated kynurenine aminotransferase structural KATalogue. Front Mol Biosci 6:7. https://doi.org/10.3389/fmolb.2019.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kubicova L, Hadacek F, Bachmann G et al (2019) Coordination complex formation and redox properties of kynurenic and xanthurenic acid can affect brain tissue homeodynamics. Antioxidants 8(10):476. https://doi.org/10.3390/antiox8100476

    Article  CAS  PubMed Central  Google Scholar 

  78. Grant RS, Coggan SE, Smythe GA (2009) The physiological action of picolinic acid in the human brain. Int J Tryptophan Res 2:71–79. https://doi.org/10.4137/ijtr.s2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Iwahashi H, Ishii T, Sugata R et al (1988) Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen. Biochem J 251(3):893–899. https://doi.org/10.1042/bj2510893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci 87(7):2506–2510. https://doi.org/10.1073/pnas.87.7.2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tutakhail A, Boulet L, Khabil S et al (2020) Neuropathology of kynurenine pathway of tryptophan metabolism. Curr Pharmacol Rep 6(1):8–23. https://doi.org/10.1007/s40495-019-00208-2

    Article  CAS  Google Scholar 

  82. Nakagami Y, Saito H, Katsuki H (1996) 3-Hydroxykynurenine toxicity on the rat striatum in vivo. Jpn J Pharmacol 71(2):183–186. https://doi.org/10.1254/jjp.71.183

    Article  CAS  PubMed  Google Scholar 

  83. Guidetti P, Schwarcz R (1999) 3-Hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur J Neurosci 11(11):3857–3863. https://doi.org/10.1046/j.1460-9568.1999.00806.x

    Article  CAS  PubMed  Google Scholar 

  84. Zwilling D, Huang SY, Sathyasaikumar KV (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145(6):863–874. https://doi.org/10.1016/j.cell.2011.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jovanovic F, Candido KD, Knezevic NN (2020) The role of the kynurenine signaling pathway in different chronic pain conditions and potential use of therapeutic agents. Int J Mol Sci 21(17):6045. https://doi.org/10.3390/ijms21176045

    Article  CAS  PubMed Central  Google Scholar 

  86. Zhang S, Collier ME, Heyes DJ et al (2020) Advantages of brain penetrating inhibitors of kynurenine-3-monooxygenase for treatment of neurodegenerative diseases. Arch Biochem Biophys 697:108702. https://doi.org/10.1016/j.abb.2020.108702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang X, Bao G, Liu D et al (2021) The association between folate and Alzheimer’s disease: a systematic review and meta-analysis. Front Neurosci 15:385. https://doi.org/10.3389/fnins.2021.661198

    Article  Google Scholar 

  88. Sorgdrager FJH, van Der Ley CP, van Faassen M et al (2020) The effect of tryptophan 2, 3-dioxygenase inhibition on kynurenine metabolism and cognitive function in the APP23 mouse model of alzheimer’s disease. Int J Tryptophan Res. https://doi.org/10.1177/1178646920972657

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yu D, Tao BB, Yang YY et al (2015) The IDO inhibitor coptisine ameliorates cognitive impairment in a mouse model of Alzheimer’s disease. J Alzheimer Dis 43(1):291–302. https://doi.org/10.3233/JAD-140414

    Article  CAS  Google Scholar 

  90. Bonda DJ, Mailankot M, Stone JG et al (2010) Indoleamine 2, 3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep 15(4):161–168. https://doi.org/10.1179/174329210X12650506623645

    Article  CAS  PubMed  Google Scholar 

  91. Parker DC, Mielke MM, Yu Q (2013) Plasma neopterin level as a marker of peripheral immune activation in amnestic mild cognitive impairment and Alzheimer’s disease. Int J Geriatr Psychiatry 28(2):149–154. https://doi.org/10.1002/gps.3802

    Article  PubMed  Google Scholar 

  92. Yu TY, Pang WJ, Yang GS (2015) 3, 3′-Diindolylmethane increases bone mass by suppressing osteoclastic bone resorption in mice. J Pharmacol Sci 127(1):75–82. https://doi.org/10.1016/j.jphs.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  93. Frick B, Schroecksnadel K, Neurauter G et al (2004) Increasing production of homocysteine and neopterin and degradation of tryptophan with older age. Clin Biochem 37(8):684–687. https://doi.org/10.1016/j.clinbiochem.2004.02.007

    Article  CAS  PubMed  Google Scholar 

  94. Miura H, Ozaki N, Shirokawa T et al (2008) Changes in brain tryptophan metabolism elicited by ageing, social environment, and psychological stress in mice. Stress 11(2):160–169. https://doi.org/10.1080/10253890701685908

    Article  CAS  PubMed  Google Scholar 

  95. Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD+ metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37. https://doi.org/10.4137/IJTR.S7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Oxenkrug GF (2007) Genetic and hormonal regulation of tryptophan-kynurenine metabolism: implications for vascular cognitive impairment, major depressive disorder, and aging. Ann N Y Acad Sci 1122(1):35–49. https://doi.org/10.1196/annals.1403.003

    Article  CAS  PubMed  Google Scholar 

  97. Kepplinger B, Baran H, Kainz A et al (2005) Age-related increase of kynurenic acid in human cerebrospinal fluid–IgG and β2-microglobulin changes. Neurosignals 14(3):126–135. https://doi.org/10.1159/000086295

    Article  CAS  PubMed  Google Scholar 

  98. Heyes MP, Saito K, Crowley JS (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115(5):1249–1273. https://doi.org/10.1093/brain/115.5.1249

    Article  PubMed  Google Scholar 

  99. Zsigmond TK, Toldi J, Vécsei L (2010) Kynurenines, neurodegeneration and Alzheimer’s disease. J Cell Mol Med 14(8):2045–2054. https://doi.org/10.1111/j.1582-4934.2010.01123.x

    Article  CAS  Google Scholar 

  100. Parasram K (2018) Phytochemical treatments target kynurenine pathway induced oxidative stress. Redox Rep 23(1):25–28. https://doi.org/10.1080/13510002.2017.1343223

    Article  CAS  PubMed  Google Scholar 

  101. Xie N, Zhang L, Gao W et al (2020) NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Sig Transduct Target Ther 5:227. https://doi.org/10.1038/s41392-020-00311-7

    Article  CAS  Google Scholar 

  102. Adeyemi OS, Awakan OJ, Afolabi LB et al (2021) Hypoxia and the kynurenine pathway: implications and therapeutic prospects in Alzheimer’s disease. Oxid Med Cell Longev. https://doi.org/10.1155/2021/5522981

    Article  PubMed  PubMed Central  Google Scholar 

  103. Braidy N, Jugder BE, Poljak A et al (2016) Resveratrol as a potential therapeutic candidate for the treatment and management of Alzheimer’s disease. Curr Top Med Chem 16(17):1951–1960. https://doi.org/10.2174/1568026616666160204121431

    Article  CAS  PubMed  Google Scholar 

  104. Campbell BM, Charych E, Lee AW (2014) Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 8:12. https://doi.org/10.3389/fnins.2014.00012

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schwarcz R, Stone TW (2017) The kynurenine pathway and the brain: challenges, controversies and promises. Neuropharmacology 112:237–247. https://doi.org/10.1016/j.neuropharm.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  106. Massudi H, Grant R, Braidy N et al (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 7(7):e42357. https://doi.org/10.1371/journal.pone.0042357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thapa K, Khan H, Sharma U et al (2020) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 267:118975. https://doi.org/10.1016/j.lfs.2020.118975

    Article  CAS  PubMed  Google Scholar 

  108. Morales I, Guzmán-Martínez L, Cerda-Troncoso C et al (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112. https://doi.org/10.3389/fncel.2014.00112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharma VK, Singh TG, Singh S et al (2021) Apoptotic pathways and Alzheimer’s disease: probing therapeutic potential. Neurochem Res 46(12):3103–3122. https://doi.org/10.1007/s11064-021-03418-7

    Article  CAS  PubMed  Google Scholar 

  110. Willette AA, Pappas C, Hoth N et al (2021) Inflammation, negative affect, and amyloid burden in Alzheimer’s disease: insights from the kynurenine pathway. Brain Behav Immun 95:216–225. https://doi.org/10.1016/j.bbi.2021.03.019

    Article  CAS  PubMed  Google Scholar 

  111. Sharma VK, Singh TG, Singh S (2020) Cyclic nucleotides signaling and phosphodiesterase inhibition: defying Alzheimer’s disease. Curr Drug Targets 21(13):1371–1384. https://doi.org/10.2174/1389450121666200727104728

    Article  CAS  PubMed  Google Scholar 

  112. Wang Q, Chen J, Wang Y et al (2012) Hepatitis C virus induced a novel apoptosis-like death of pancreatic beta cells through a caspase 3-dependent pathway. PLoS ONE 7(6):e38522. https://doi.org/10.1371/journal.pone.0038522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moloney RD, Desbonnet L, Clarke G et al (2014) The microbiome: stress, health and disease. Mamm Genome 25(1–2):49–74. https://doi.org/10.1007/s00335-013-9488-5

    Article  CAS  PubMed  Google Scholar 

  114. Garcez ML, Jacobs KR, Guillemin GJ (2019) Microbiota alterations in Alzheimer’s disease: involvement of the kynurenine pathway and inflammation. Neurotox Res 36(2):424–436. https://doi.org/10.1007/s12640-019-00057-3

    Article  PubMed  Google Scholar 

  115. Sharma VK, Singh TG, Garg N et al (2021) Dysbiosis and Alzheimer’s disease: a role for chronic stress? Biomolecules 11(5):678. https://doi.org/10.3390/biom11050678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kennedy PJ, Cryan JF, Dinan TG (2014) Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J Gastroenterol 20(39):14105. https://doi.org/10.3748/wjg.v20.i39.14105

    Article  PubMed  PubMed Central  Google Scholar 

  117. Garg N, Singh TG, Khan H et al (2022) Mechanistic interventions of selected Ocimum species in management of diabetes, obesity and liver disorders: transformative developments from pre-clinical to clinical approaches. Biointerface Res Appl Chem 12(1):1304–1323. https://doi.org/10.33263/BRIAC121.13041323

    Article  CAS  Google Scholar 

  118. Kwon YH, Wang H, Denou E et al (2019) Modulation of gut microbiota composition by serotonin signaling influences intestinal immune response and susceptibility to colitis. Cell Mol Gastroenterol Hepatol 7(4):709–728. https://doi.org/10.1016/j.jcmgh.2019.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mezrich JD, Fechner JH, Zhang X et al (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185(6):3190–3198. https://doi.org/10.4049/jimmunol.0903670

    Article  CAS  PubMed  Google Scholar 

  120. Guarner F, Khan AG, Garisch J et al (2012) World gastroenterology organisation global guidelines: probiotics and prebiotics october 2011. J Clin Gastroenterol 46(6):468–481. https://doi.org/10.1097/MCG.0b013e3182549092

    Article  PubMed  Google Scholar 

  121. Xin SH, Tan L, Cao X (2018) Clearance of amyloid beta and tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res 34(3):733–748. https://doi.org/10.1007/s12640-018-9895-1

    Article  CAS  PubMed  Google Scholar 

  122. Shirotani K, Tsubuki S, Iwata N et al (2001) Neprilysin degrades both amyloid β peptides 1–40 and 1–42 most rapidly and efficiently among thiorphan-and phosphoramidon-sensitive endopeptidases. J Biol Chem 276(24):21895–21901. https://doi.org/10.1074/jbc.M008511200

    Article  CAS  PubMed  Google Scholar 

  123. Nalivaeva NN, Belyaev ND, Zhuravin IA (2012) The Alzheimer’s amyloid-degrading peptidase, neprilysin: can we control it? Int J Alzheimer Dis 2012:383796. https://doi.org/10.1155/2012/383796

    Article  CAS  Google Scholar 

  124. Klein C, Roussel G, Brun S (2018) 5-HIAA induces neprilysin to ameliorate pathophysiology and symptoms in a mouse model for Alzheimer’s disease. Acta Neuropathol Commun 6(1):1–15

    Article  Google Scholar 

  125. Ries M, Sastre M (2016) Mechanisms of Aβ clearance and degradation by glial cells. Front Aging Neurosci 8:160. https://doi.org/10.1186/s40478-018-0640-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Grimm MO, Mett J, Stahlmann CP (2013) Neprilysin and Aβ clearance: impact of the APP intracellular domain in NEP regulation and implications in Alzheimer’s disease. Front Aging Neurosci 5:98. https://doi.org/10.1186/s40478-018-0640-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Duan Z, Zhang S, Liang H et al (2020) Amyloid β neurotoxicity is IDO1–Kyn–AhR dependent and blocked by IDO1 inhibitor. Signal Transduct Target Ther 5:96. https://doi.org/10.1038/s41392-020-0188-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Morgese MG, Schiavone S, Maffione AB (2020) Depressive-like phenotype evoked by lifelong nutritional omega-3 deficiency in female rats: crosstalk among kynurenine, toll-like receptors and amyloid beta oligomers. Brain Behav Immun 87:444–454. https://doi.org/10.1016/j.bbi.2020.01.015

    Article  CAS  PubMed  Google Scholar 

  129. Guillemin GJ, Brew BJ, Noonan CE (2007) Mass spectrometric detection of quinolinic acid in microdissected Alzheimer’s disease plaques. Int Corros Conf Ser 1304:404–408. https://doi.org/10.1016/j.ics.2007.07.012

    Article  CAS  Google Scholar 

  130. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3):388–397. https://doi.org/10.1189/jlb.0303114

    Article  CAS  PubMed  Google Scholar 

  131. Richard DM, Dawes MA, Mathias CW (2009) L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res. https://doi.org/10.4137/ijtr.s2129

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jacobs KR, Lim CK, Blennow K et al (2019) Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer’s disease and relationship to amyloid-β and tau. Neurobiol Aging 80:11–20. https://doi.org/10.1016/j.neurobiolaging.2019.03.015

    Article  CAS  PubMed  Google Scholar 

  133. Whiley L, Chappell KE, D’Hondt E et al (2021) Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alz Res Therapy 13:20. https://doi.org/10.1186/s13195-020-00741-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: conceived and designed the experiments: TGS. Analyzed the data: VKS, TGS. Wrote the manuscript: VKS. Visualization: VKS, AM, NKP. Editing of the manuscript: VKS, TGS. Critically reviewed the article: TGS. Supervision: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Consent to Participate

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.K., Singh, T.G., Prabhakar, N.K. et al. Kynurenine Metabolism and Alzheimer’s Disease: The Potential Targets and Approaches. Neurochem Res 47, 1459–1476 (2022). https://doi.org/10.1007/s11064-022-03546-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03546-8

Keywords

Navigation