Skip to main content

Advertisement

Log in

Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

The hilly region of Manipur especially along the NH-39 road, which is the lifeline of the State, is prone to landslides every year particularly during the monsoon season. Anthropological factors, such as excessive deforestation, unsystematic changes in land use and land cover pattern and slope cultivation, etc. are indirectly initiate the process of landslides. In the present study, landslide susceptibility mapping was carried out using frequency ratio and fuzzy gamma operator models with the help of geomatics techniques. The landslide susceptibility mapping was prepared using landslide inventory data and nine landslide causative factors, i.e. lithology, land use and land cover, geomorphology, drainage density, lineament density, slope gradient, slope aspect, curvature, and elevation. These causative factors were prepared with the help of toposheet, high resolution IRS P6 LISS IV satellite imagery, cartosat DEM data and extensive field work. The landslide susceptibility maps were prepared by calculating the relationship between the landslide causative parameters with landslide areas using a frequency ratio model. To get the fuzzy membership values, the frequency ratio values were normalized between the ranges of 0 and 1. The landslide susceptibility maps were compared and prediction accuracy of both the models was derived using the area under curve (AUC) method. The success rate curves were obtained using both training and all landslide inventory dataset. For training landslide inventory dataset, the AUC value of the success rate curve for the frequency ratio model was found to be 0.8056, whereas for the fuzzy gamma operator (using γ = 0.99) model, it was calculated as 0.9150. In the case of all landslide inventory dataset, the AUC value of the success rate curve for the frequency ratio model and the fuzzy gamma operator model were 0.7921 and 0.8188, respectively. The landslide susceptibility index was also compared with the landslide validation inventory dataset to obtain the prediction rate curves. The AUC value of the prediction rate curve for the frequency ratio model was 0.5681, whereas in the case of the fuzzy gamma operator model, it was 0.6721.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmad M, Ansari MK, Singh TN (2013) Instability investigations of basaltic soil slopes along SH-72, Maharashtra, India. Geomat Nat Hazards Risk. doi:10.1080/19475705.2013.826740

    Google Scholar 

  • Akgun A, Bulut F (2007) GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ Geol 51(8):1377–1387. doi:10.1007/s00254-006-0435-6

    Article  Google Scholar 

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi:10.1007/s100640050066

    Article  Google Scholar 

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277. doi:10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Anbazhagan S, Ramesh V (2014) Landslide hazard zonation mapping in ghat road section of Kolli hills, India. J Mt Sci 11(5):1308–1325. doi:10.1007/s11629-012-2618-9

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81. doi:10.1007/s10346-003-0006-9

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng Geol 81(4):432–445. doi:10.1016/j.enggeo.2005.08.004

    Article  Google Scholar 

  • Begueria S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. doi:10.1007/s11069-005-5182-6

    Article  Google Scholar 

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon, Oxford, pp 292–302

    Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of 4th international symposium on landslides, vol 1, Vancouver, Toronto, Canada. BiTech, Richmond, BC, pp 307–324

  • Capecchi F, Focardi P (1988) Rainfall and landslides: research into a critical precipitation coefficient in an area of Italy. In: Proceedings of the 5th international symposium on landslides, Lausanne, pp 1031–1136

  • Catani F, Lagomarsino S, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. doi:10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Champati Ray PK, Dimri S, Lakhera RC, Sati S (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4:101–111. doi:10.1007/s10346-006-0068-6

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora MK, Gupta NK (2010) Landslide susceptibility zonation through ratings derived from artificial neural network. Int J Appl Earth Obs Geoinf 12:340–350. doi:10.1016/j.jag.2010.04.006

    Article  Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23. doi:10.1016/j.enggeo.2011.09.011

    Article  Google Scholar 

  • Chung C-JF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogramm Eng Remote Sens 65(12):1389–1399. doi:0099-1112/99/6512-1389$3.00/0

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102:193–213. doi:10.1016/j.enggeo.2008.03.018

    Article  Google Scholar 

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 112:496–510. doi:10.1016/j.geomorph.2008.05.041

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Process Land 28:527–545. doi:10.1002/Esp.456

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87. doi:10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgun A, Ikizler SB, Tatar O (2013) A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards 65:1481–1506. doi:10.1007/s11069-012-0418-8

    Article  Google Scholar 

  • Demir G, Aytekin M, Akgun A (2015) Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example from Niksar—Resadiye (Tokat, Turkey). Arab J Geosci 8:1801–1812. doi:10.1007/s12517-014-1332-z

    Article  Google Scholar 

  • Devi TD, Kushwaha RAS (2011) Landslide hazard zonation along NH-39 from Kangpokpi to Mao, Manipur, India. Int J Econ Environ Geol 2(1):30–35

    Google Scholar 

  • Devoli G, Morales A, Hoeg K (2007) Historical landslides in Nicaragua—collection and analysis of data. Landslides 4(1):5–18. doi:10.1007/s10346-006-0048-x

    Article  Google Scholar 

  • Ehret D, Rohn J, Dumperth C, Eckstein S, Ernstberger S, Otte K, Rudolph R, Wiedenmann J (2010) Frequency ratio analysis of mass movements in the Xiangxi catchment, Three Gorges Reservoir area, China. J Earth Sci 21(6):824–834. doi:10.1007/s12583-010-0134-9

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250. doi:10.1016/j.enggeo.2004.06.001

    Article  Google Scholar 

  • Evans P (1932) Explanatory notes to accompany a table showing the tertiary succession in Assam. Trans Min Geol Inst India 27:155–260

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi:10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Fernandez Merodo JA, Pastor M, Mira P (2004) Modeling of diffuse failure mechanisms of catastrophic landslides. Comput Methods Appl Mech Eng 193:2911–2939. doi:10.1016/j.cma.2003.09.016

    Article  Google Scholar 

  • Geological Survey of India (2011) Geology and mineral map of Manipur. Ministry of Mines, Government of India

  • Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27. doi:10.1016/j.enggeo.2004.10.004

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinalli M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-case study, central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Hasekiogullari GD, Ercanoglu M (2012) A new approach to use AHP in landlside susceptibility mapping: a case study at Yenice (Karbuk, NW Turkey). Nat Hazards 63:1157–1179

    Article  Google Scholar 

  • IDRISI (1995) The decision support ring. IDRISI user manual version-4

  • Intarawichian N, Dasananda S (2011) Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Environ Earth Sci 64(8):2271–2285. doi:10.1007/s12665-011-1055-3

    Article  Google Scholar 

  • Jaiswal P, van Westen CJ, Jetten V (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng Geol 116:236–250. doi:10.1016/j.enggeo.2010.09.005

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. Int Year Book Cartogr 7:186–190

    Google Scholar 

  • Kannan M, Saranathan E, Anbalagan R (2013) Landslide vulnerability mapping using frequency ratio model: a geospatial approach in Bodi-BodimettuGhat section, Theni District, Tamil Nadu, India. Arab J Geosci 6(8):2901–2913. doi:10.1007/s12517-012-0587-5

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366. doi:10.1016/j.enggeo.2006.03.004

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk 3(1):30–43. doi:10.1080/17499510802541417

    Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439. doi:10.1007/s10346-013-0391-7

    Article  Google Scholar 

  • Kumar R, Anbazhagan R (2015) Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy and GIS. J Earth Syst Sci 124(2):431–448. doi:10.1007/s12040-015-0536-2

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26(7):1477–1491. doi:10.1080/01431160412331331012

    Article  Google Scholar 

  • Lee S (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ Geol 52:615–623. doi:10.1007/s00254-006-0491-y

    Article  Google Scholar 

  • Lee S, Pradhan B (2006) Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. J Earth Syst Sci 115(6):661–672. doi:10.1007/s12040-006-0004-0

    Article  Google Scholar 

  • Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. doi:10.1007/s00254-005-1228-z

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131. doi:10.1007/s00254-002-0616-x

    Article  Google Scholar 

  • Lee S, Ryu JH, Kim LS (2007) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides 4:327–338. doi:10.1007/s10346-007-0088-x

    Article  Google Scholar 

  • Mallet FR (1876) On the coal fields of Naga Hills bordering the Lakhimpur and Sibsagar districts, Assam. Mem Geol Surv India 12(2):286p

    Google Scholar 

  • Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies and hazard zonation in Europe. Geomorphology 15:213–225. doi:10.1016/0169-555X(95)00071-C

    Article  Google Scholar 

  • McKean J, Buechel S, Gaydos L (1991) Remote sensing and landslide hazard assessment. Photogramm Eng Remote Sens 57(9):1185–1193

    Google Scholar 

  • Mostyn GR, Fell R (1997) Quantitative and semiquantitative estimation of the probability of landslides. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 297–315

  • Nandi A, Shakoor A (2008) Application of logistic regression model for slope instability prediction in Cuyahoga River Watershed, Ohio, USA. Georisk 2(1):16–27. doi:10.1080/17499510701842221

    Google Scholar 

  • Nandi A, Shakoor A (2009) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20. doi:10.1016/j.enggeo.2009.10.001

    Article  Google Scholar 

  • Naranjo JL, van Westen CJ, Soeters R (1994) Evaluating the use of training areas in bivariate statistical landslide hazard analysis—a case study in Columbia. ITC J 3:292–300

  • Poudyal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61:1049–1064. doi:10.1007/s12665-009-0426-5

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054. doi:10.1007/s12665-009-0245-8

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2009) Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Appl Geomat 1:3–15. doi:10.1007/s12518-009-0001-5

    Article  Google Scholar 

  • Ramakrishnan D, Singh TN, Verma AK, Gulati A, Tiwari KC (2013) Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaon Himalaya, India. Nat Hazards 65:315–330. doi:10.1007/s11069-012-0365-4

    Article  Google Scholar 

  • Ramesh V, Anbazhagan S (2015) Landslide susceptibility mapping along Kolli hills Ghat road section (India) using frequency ratio, relative effect and fuzzy logic models. Environ Earth Sci 73(12):8009–8021. doi:10.1007/s12665-014-3954-6

    Article  Google Scholar 

  • Ramesh V, Phaomei T, Baskar M, Anbazhagan S (2016) Application of fuzzy gamma operator in landslide susceptibility mapping along Yercaud Ghat Road section, Tamil Nadu, India. In: Janardhana Raju N (eds) Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Capital Publishing Company, Springer International Publishing, pp 545–553. doi:10.1007/978-3-319-18663-4_82

  • Regmi NR, Giardino JR, McDonald EV, Vitek JD (2014) A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 11:247–262. doi:10.1007/s10346-012-0380-2

    Article  Google Scholar 

  • Saaty TL (1978) Exploring the interface between hierarchies, multiple objectives and fuzzy set. Fuzzy Sets Syst 1:57–68. doi:10.1016/0165-0114(78)90032-5

    Article  Google Scholar 

  • Singh PK, Kainthola A, Singh TN (2013) Rock mass assessment along the right bank of river Sutlej, Luhri, Himachal Pradesh, India. Geomat Nat Hazards Risk. doi:10.1080/19475705.2013.834486

    Google Scholar 

  • Soibam I (1998) On the geology of Manipur. In: Souvenir: IX Manipur science congress, pp 12–18

  • Srivastava V, Srivastava H, Lakhera RC (2010) Fuzzy gamma based geomatic modeling for landslide hazard susceptibility in a part of Tons river valley, northwest Himalaya, India. Geomat Nat Hazards Risk 1(3):225–242. doi:10.1080/19475705.2010.490103

    Article  Google Scholar 

  • Sujatha ER, Kumaravel P, Rajamanickam GV (2011) GIS based landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal, India using binary logistic regression analysis. J Mt Sci 8:505–517. doi:10.1007/s11629-011-2157-9

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using Probablistic Certainty Factor Approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121(5):1337–1350. doi:10.1007/s12040-012-0230-6

    Article  Google Scholar 

  • Sujatha ER, Rajamanickam V, Kumaravel P, Saranathan E (2013) Landslide susceptibility analysis using probabilistic likelihood ratio model—a geospatial-based study. Arab J Geosci 6:429–440. doi:10.1007/s12517-011-0356-x

    Article  Google Scholar 

  • Tunusluoglu MC, Gokceoglue C, Nefeslioglu HA, Sonmez H (2008) Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environ Geol 54(1):9–22. doi:10.1007/s00254-007-0788-5

    Article  Google Scholar 

  • Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55:1397–1405

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull As Eng Geol 21:337–342. doi:10.2113/gseegeosci.xxi.3.337

    Google Scholar 

  • Xu C, Xu X, Dai F, Wu Z, He H, Shi F, Wu X, Xu S (2013) Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Nat Hazards 68:883–900. doi:10.1007/s11069-013-0661-7

    Article  Google Scholar 

  • Yilmaz I (2009) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68:297–306. doi:10.1007/s10064-009-0185-2

    Article  Google Scholar 

  • Yilmaz I, Keskin I (2009) GIS based statistical and physical approaches to landslide susceptibility mapping (Sebinkarahisar, Turkey). Bull Eng Geol Environ 68:459–471. doi:10.1007/s10064-009-0188-z

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Bednarik M (2012) Comments on “Landslide susceptibility zonation study using remote sensing and GIS technology in the Ken-Betwa River Link area, India” by Avtar, R., Singh, C.K., Singh, G., Verma, R.L., Mukherjee, S., Sawada, H., in Bulletin of Engineering Geology and the Environment (doi:10.1007/s10064-011-0368-5). pp 803–804. Bull Eng Geol Environ 71:803–805. doi:10.1007/s10064-011-0406-3

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of the 5th international symposium on landslides, vol 2. Lausanne, pp 1269–1272

  • Zadeh LA (1965) Fuzzy sets. IEEE Inf Control 8:125–151

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. S. Parasuraman, Director of TISS, who has encouraged and supported the research work. The authors are grateful to the Head, Department of Earth Sciences, Manipur University, for provided necessary information and discussion as a part of the field visit. The authors thank anonymous reviewers for their comments and suggestions to improve the quality of the research article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Balamurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, G., Ramesh, V. & Touthang, M. Landslide susceptibility zonation mapping using frequency ratio and fuzzy gamma operator models in part of NH-39, Manipur, India. Nat Hazards 84, 465–488 (2016). https://doi.org/10.1007/s11069-016-2434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2434-6

Keywords

Navigation