Skip to main content
Log in

A probability method of rainfall warning for sediment-related disaster in developing countries: a case study in Sierra Madre Oriental, Mexico

  • Research Letter
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Sediment-related disasters may cause high casualties and economic losses in mountainous zones. The occurrence of these natural hazards in developing countries, where recovery efforts usually exceed the available resources, brings to the fore the urgent need to develop rainfall criteria, in order to understand, mitigate and reduce to the barest minimum the adversities with the available data resources. Unfortunately, many restrictions are encountered in developing countries, for example in Mexico: historical rainfall information is difficult to access and if available, it is only on a daily basis, thereby, making rainfall criteria development almost impossible. Therefore, this research provides a disaster probability approach named interim zone using the relationship between the disaster occurrence and rainfall episodes, in order to be used as a rainfall warning for sediment-related disaster in Sierra Madre Oriental, Mexico. From the total rainfall data by rainfall episodes, we could establish an interim zone where 71.9 mm is the minimum amount of rainfall needed to trigger a sediment-related disaster and 112.6 mm is the amount of rainfall if exceeded makes the probability of disaster occurrence high. Using maximum intensity, the interim zone is within 57.7 mm/day as minimum value to trigger a sediment-related disaster and 83.6 mm/day as the amount high likely to cause a sediment-related disaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alcantara-Ayala I (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40. doi:10.1016/j.geomorph.2003.11.004

    Article  Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265. doi:10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J Geophys Res 115:F03013. doi:10.1029/2009JF001321

    Google Scholar 

  • Brand EW (1999) Landslides in Hong Kong caused by the severe rainfall event of 8 May 1992. In: Sassa K (ed) Landslides of the world. Kyoto University Press, Kyoto, pp 195–198

    Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann Ser A, Phys Geogr 62:23–27. doi:10.2307/520449

    Article  Google Scholar 

  • Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorm in Valtellina (central Alps–Italy). In: Procedings 4th international conference and field workshop on landslides, vol 1, The Japan Geological Society, Tokyo, pp 267–272

  • Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif Geol 38(12):267–272

    Google Scholar 

  • Ceriani M, Lauzi S, Padovan N (1992) Rainfalls and landslides in the alpine area of Lombardia Region-Central Alps-Italy. In: Proceedings of the VII International Congress Interpraevent 1992, Bern. pp 9–20

  • Chang KT, Chiang SH, Lei F (2008) Analysing the relationship between typhoon-triggered landslides and critical rainfall conditions. Earth Surf Process Landf 33:1261–1271. doi:10.1002/esp.1611

    Article  Google Scholar 

  • Chen CW, Saito H, Oguchi T (2015) Rainfall intensity-duration conditions for mass movements in Taiwan. Prog Earth Planet Sci 2:14. doi:10.1186/s40645-015-0049-2

    Article  Google Scholar 

  • Chien-Yuan C, Tien-Chien C, Fan-Chieh Y et al (2005) Rainfall duration and debris-flow initiated studies for real-time monitoring. Environ Geol 47:715–724. doi:10.1007/s00254-004-1203-0

    Article  Google Scholar 

  • Chleborad AF, Baum RL, Godt JW, Powers PS (2008) A prototype system for forecasting landslides in the Seattle, Washington, area. Rev Eng Geol 20:103–120. doi:10.1130/2008.4020(06)

    Google Scholar 

  • Church M, Miles MJ (1987) Meteorological antecedents to debris flow in southwestern British Columbia; some case studies. Rev Eng Geol 7:63–80. doi:10.1130/REG7

    Article  Google Scholar 

  • Cotecchia V (1978) Systematic reconnaissance mapping and registration of slope movements. Bull Int Assoc Eng Geol 17:5–37. doi:10.1007/BF02634670

    Article  Google Scholar 

  • Crosta G (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35:131–145. doi:10.1007/s002540050300

    Article  Google Scholar 

  • Crosta G, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Proceedings of 2nd EGS Plinius Conference on Mediterranean Storms, Siena, Italy, pp 463–487

  • Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Process Landforms 24:825–833. doi:10.1002/(SICI)1096-9837(199908)24:9<825:AID-ESP14>3.0.CO;2-M

    Article  Google Scholar 

  • Dahal RK, Hasegawa S (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 100:429–443. doi:10.1016/j.geomorph.2008.01.014

    Article  Google Scholar 

  • Deb SK, El-Kadi AI (2009) Susceptibility assessment of shallow landslides on Oahu, Hawaii, under extreme-rainfall events. Geomorphology 108:219–233. doi:10.1016/j.geomorph.2009.01.009

    Article  Google Scholar 

  • Dhakal AS, Sidle RC (2004) Distributed simulations of landslides for different rainfall conditions. Hydrol Process 18:757–776. doi:10.1002/hyp.1365

    Article  Google Scholar 

  • Froehlich W, Gil E, Kasza I, Starkel L (1990) Thresholds in the transformation of slopes and river channels in the Darjeeling Himalaya, India. Mt Res Dev 10:301–312. doi:10.2307/3673492

    Article  Google Scholar 

  • Glade T (1998) Establishing the frequency and magnitude of landslide-triggering rainstorm events in New Zealand. Environ Geol 35:160–174. doi:10.1007/s002540050302

    Article  Google Scholar 

  • Godt JW, Baum RL, Chleborad AF (2006) Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf Process Landforms 31:97–110. doi:10.1002/esp.1237

    Article  Google Scholar 

  • Guzzetti F, Cardinali M, Reichenbach P et al (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Eng Geol 73:229–245. doi:10.1016/j.enggeo.2004.01.006

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. doi:10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi:10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Hasnawir Kubota T (2009) Analysis for early warning of sediment-related disaster in Mt. Bawakaraeng Caldera, South Sulawesi, Indonesia. J Jpn Soc Eros Control Eng 62:38–45. doi:10.11475/sabo.62.4_38

    Google Scholar 

  • Hasnawir KT (2012) Rainfall Threshold for Shallow Landslides in Kelara Watershed, Indonesia. Int J Jpn Eros Control Eng 5:86–92. doi:10.13101/ijece.5.86

    Article  Google Scholar 

  • Hiura H, Kaibori M, Suemine A, et al (2005) Sediment related disasters generated by typhoons in 2004. In: Senneset K, Flaata K, Larsen JO (eds) Proceedings of the 11th international conference and field trip on landslides, Norway, 1-10 September 2005. Taylor & Francis/Balkema, AK Leiden, pp 157–163

  • Huang J, Ju NP, Liao YJ, Liu DD (2015) Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Nat Hazards Earth Syst Sci 15:2715–2723. doi:10.5194/nhess-15-2715-2015

    Article  Google Scholar 

  • Ibsen ML, Casagli N (2004) Rainfall patterns and related landslide incidence in the Porretta-Vergato region, Italy. Landslides 1:143–150. doi:10.1007/s10346-004-0018-0

    Article  Google Scholar 

  • Jakob M, Holm K, Lange O, Schwab JW (2006) Hydrometeorological thresholds for landslide initiation and forest operation shutdowns on the north coast of British Columbia. Landslides 3:228–238. doi:10.1007/s10346-006-0044-1

    Article  Google Scholar 

  • Khan YA, Lateh H, Baten MA, Kamil AA (2012) Critical antecedent rainfall conditions for shallow landslides in Chittagong City of Bangladesh. Environ Earth Sci 67:97–106. doi:10.1007/s12665-011-1483-0

    Article  Google Scholar 

  • Kim SK, Hong WP, Kim YM (1991) Prediction of rainfall-triggered landslides in Korea. In: Bell DH (ed) Landslides. A.A. Balkema, Rotterdam, pp 989–994

    Google Scholar 

  • Larsen MC, Simon A (1993) A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geogr Ann Ser A-Phys Geogr 75:13–23. doi:10.2307/521049

    Article  Google Scholar 

  • Lee ML, Ng KY, Huang YF, Li WC (2014) Rainfall-induced landslides in Hulu Kelang area, Malaysia. Nat Hazards 70:353–375. doi:10.1007/s11069-013-0814-8

    Article  Google Scholar 

  • Ma T, Li C, Lu Z, Bao Q (2015) Rainfall intensity–duration thresholds for the initiation of landslides in Zhejiang Province, China. Geomorphology 245:193–206. doi:10.1016/j.geomorph.2015.05.016

    Article  Google Scholar 

  • Ministry of land infrastructure and transport of Japan (2004) Guidelines for construction technology transfer: development of warning and evacuation system against sediment disasters in developing countries. http://www.mlit.go.jp/sogoseisaku/inter/keizai/gijyutu/pdf/sediment_e.pdf. Accessed 6 Jan 2016

  • Nolasco-Javier D, Kumar L, Tengonciang AMP (2015) Rapid appraisal of rainfall threshold and selected landslides in Baguio, Philippines. Nat Hazards 78:1587–1607. doi:10.1007/s11069-015-1790-y

    Article  Google Scholar 

  • Rahardjo H, Leong EC, Gasmo JM, Tang SK (1998) Assessment of rainfall effects on stability of residual soil slopes. In: Proceedings of 2nd international conference on unsaturated soils, vol 2. Beijing, China, August 27–30, pp 280–285

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan. Geomorphology 118:167–175. doi:10.1016/j.geomorph.2009.12.016

    Article  Google Scholar 

  • Sanchez-Castillo L, Kubota T, Cantu-Silva I, Hasnawir (2015) Critical rainfall for the triggering of sediment related disasters under the urban forest development in Nuevo Leon, Mexico. Int J Ecol Dev 30:1–10

    Google Scholar 

  • Secretariat of Sustainable Development of Nuevo Leon state (2013) Atlas of risk for the state of Nuevo Leon. http://200.23.43.29/atlas/Atlas_Riesgo_segu_et_documento.pdf. Accessed 6 Jan 2016 (in Spanish)

  • Shuin Y, Hotta N, Suzuki M, Ogawa KI (2012) Estimating the effects of heavy rainfall conditions on shallow landslides using a distributed landslide conceptual model. Phys Chem Earth 49:44–51. doi:10.1016/j.pce.2011.06.002

    Article  Google Scholar 

  • Taniguchi Y (2008) Sediment disasters caused by typhoon No. 14, 2005 in Miyazaki Prefecture. Int J Eros Control Eng 1:11–19. doi:10.13101/ijece.1.11

    Article  Google Scholar 

  • Teramoto Y, Shimokawa E, Jitousono T (2006) Distribution and features of slope failures in Tarumizu City, Kagoshima Prefecture caused by typhoon Nabi in September 2005. Res Bull Kagoshima Univ For 34:1–9

    Google Scholar 

  • Wieczorek GF (1987) Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains. In: Costa JE, Wieczorek GF (eds) Debris flow/avalanches: process, recognition, and mitigation, Reviews in Engineering Geology, vol 7. Geological Society of America, pp 93–104

  • Wieczorek GF, Morgan BA, Campbell RH (2000) Debris-flow hazards in the blue ridge of Central Virginia. Environ Eng Geosci 6:3–23. doi:10.2113/gseegeosci.6.1.3

    Article  Google Scholar 

  • Yano K (1990) Study of the method for setting standard rainfall of debris low by the reform of antecedent rain. J Jpn Soc Eros Control Eng 43:3–13. doi:10.11475/sabo1973.43.4_3

    Google Scholar 

  • Yatabe R, Yagi N, Enoki M (1986) Consideration on prediction method for occurring time of slope failure during seepage of rainfall. J Geotech Eng 3–6:297–305. doi:10.2208/jscej.1986.376_297

    Google Scholar 

  • Zêzere JL, Vaz T, Pereira S, Marques R, Garcia R (2015) Rainfall thresholds for landslide activity in Portugal: a state of the art. Environ Earth Sci 73:2917–2936. doi:10.1007/s12665-014-3672-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sanchez-Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez-Castillo, L., Kubota, T., Cantú-Silva, I. et al. A probability method of rainfall warning for sediment-related disaster in developing countries: a case study in Sierra Madre Oriental, Mexico. Nat Hazards 85, 1893–1906 (2017). https://doi.org/10.1007/s11069-016-2669-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-016-2669-2

Keywords

Navigation