Skip to main content
Log in

Influence of prey refuge on predator–prey dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A diffusive predator–prey system with Michaelis–Menten type functional response subject to prey refuge is considered. Bifurcation analysis of Hopf and Turing are carried out in detail. In particular, Turing domain is given in the two parameters space. The obtained results show that the refuges used by prey have great influence on the pattern formation of the populations. More specifically, as prey refuge being increased, spotted pattern and coexistence of spotted and stripe-like pattern emerge. It is also proved that the pattern is not dependent on the initial conditions, which means the pattern is controlled by the intrinsic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 237, 37–72 (1952)

    Article  Google Scholar 

  2. Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems-From Dissipative Structures to Order through Fluctuations. Wiley, New York (1977)

    MATH  Google Scholar 

  4. Murray, J.: Mathematical Biology, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  5. Petrovskii, S., Li, B.L., Malchow, H.: Quantification of the spatial aspect of chaotic dynamics in biological and chemical systems. Bull. Math. Biol. 65, 425–446 (2003)

    Article  Google Scholar 

  6. Satnoianu, R., Menzinger, M., Maini, P.: Turing instabilities in general systems. J. Math. Biol. 41, 493–512 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, G.Q., Jin, Z., Liu, Q.X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008)

    Article  Google Scholar 

  8. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  9. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  10. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612 (1991)

    Article  Google Scholar 

  11. Baurmann, M., Feudel, U.: Turing patterns in a simple model of a nutrient-microorganism system in the sediment. Ecol. Complex. 1, 77–94 (2004)

    Article  MathSciNet  Google Scholar 

  12. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  13. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007)

    Article  MathSciNet  Google Scholar 

  14. Sun, G., Jin, Z., Liu, Q.X., Li, L.: Pattern formation in a spatial S-I model with non-linear incidence rates. J. Stat. Mech. P11011 (2007)

  15. Meinhardt, H.: Growth and patterning-dynamics of stripe formation. Nature 376, 722–723 (1995)

    Article  Google Scholar 

  16. Sun, G.Q., Jin, Z., Liu, Q.X., Li, L.: Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate. J. Stat. Mech. P08011 (2008)

  17. Segel, L.A., Jackson, J.L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Article  Google Scholar 

  18. Levin, S.A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974)

    Article  Google Scholar 

  19. Ricklefs, R.E.: Environmental heterogeneity and plant species diversity: a hypothesis. Am. Nat. 111, 376–381 (1977)

    Article  Google Scholar 

  20. Okubo, A.: Horizontal dispersion and critical scales for phytoplankton patches. In: Steel, J.H. (ed.) Spatial Pattern in Plankton Communities, p. 21. Plenum, New York (1978)

    Google Scholar 

  21. Okubo, A.: Diffusion and Ecological Problems: Modern Perspective. Interdisciplinary Applied Mathematics, vol. 14. Springer, Berlin (2001)

    Google Scholar 

  22. Leppnen, T.: PHD-thesis, Helsinki University of Technology, Finland (2004)

  23. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Article  Google Scholar 

  24. Hassel, M.P., May, R.M.: Stability in insect host-parasite models. J. Anim. Ecol. 42, 693–726 (1973)

    Article  Google Scholar 

  25. Smith, J.M.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  26. Hassell, M.P.: The Dynamics of Arthropod Predator–Prey Systems. Princeton University Press, Princeton (1978)

    MATH  Google Scholar 

  27. Hoy, M.A.: Almonds (California). In: Helle, W., Sabelis, M.W. (eds.) Spider Mites: Their Biology, Natural Enemies and Control, World Crop Pests, vol. 1B. Elsevier, Amsterdam (1985)

    Google Scholar 

  28. Ives, A.R., Dobson, A.P.: Antipredator behavior and the population dynamics of simple predator–prey systems. Am. Nat. 130, 431–447 (1987)

    Article  Google Scholar 

  29. González-Olivars, E., Ramos-Jiliberto, R.: Dynamics consequences of prey refuges in a simple model system: more prey, few predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  30. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1974)

    Google Scholar 

  31. Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    MATH  Google Scholar 

  32. Freedman, H.I.: Deterministic Mathematical Model in Population Ecology. Marcel Dekker, New York (1980)

    Google Scholar 

  33. Hochberg, M.E., Holt, R.D.: Refuge evolution and the population dynamics of coupled host-parasitoid associations. Evol. Ecol. 9, 633–661 (1995)

    Article  Google Scholar 

  34. Xiao, D.M., Jennings, L.S.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  36. Sun, G.Q., Jin, Z., Zhao, Y.G., Liu, Q.X., Li, L.: Spatial pattern in a predator–prey system with both self- and cross-diffusion. Int. J. Mod. Phys. C 20, 71–84 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Morozov, A., Petrovskii, S., Li, B.L.: Bifurcations and chaos in a predator–prey system with the Allee effect. Proc. R. Soc. Lond. B, Biol. Sci. 271, 1407–1414 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, J. Influence of prey refuge on predator–prey dynamics. Nonlinear Dyn 67, 191–201 (2012). https://doi.org/10.1007/s11071-011-9971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-9971-z

Keywords

Navigation