Skip to main content
Log in

Global stability of periodic solutions for a discrete predator–prey system with functional response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study the existence and global stability of a periodic solution for a discrete predator–prey system with the Beddington–DeAngelis functional response and predator cannibalism. By using the continuation theorem, the existence conditions of at least one periodic solution are obtained, and the sufficient conditions, which ensure the global stability of the positive periodic solution, are derived by constructing a special Lyapunov function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jones, L.E., Ellner, S.P.: Evolutionary tradeoff and equilibrium in an aquatic predator–prey system. Bull. Math. Biol. 66, 1547–1573 (2004)

    Article  MathSciNet  Google Scholar 

  2. Volterra, V.: Variazione e fluttuazini del numero d’individui in specie animali conviventi. Mem. Accad. Naz. Lincei 2, 31–113 (1926)

    Google Scholar 

  3. Fan, M., Kuang, Y.: Dynamics of a nonautonomous predator–prey system with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  5. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975)

    Article  Google Scholar 

  6. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    Article  MATH  Google Scholar 

  7. Cantrell, R.S., Cosner, C.: On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cantrell, R.S., Cosner, C.: Effects of domain size on the persistence of populations in a diffusive food chain model with DeAngelis–Beddington functional response. Nat. Resour. Model. 14, 335–367 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hwang, T.W.: Global analysis of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 281, 395–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hwang, T.W.: Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response. J. Math. Anal. Appl. 290, 113–122 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohlmeier, C., Ebenhőh, W.: The stabilizing role of cannibalism in a predator–prey system. Bull. Math. Biol. 57, 401–411 (1995)

    MATH  Google Scholar 

  12. Bosch, F.V.D., Gabriel, W.: Cannibalism in an age-structured predator–prey system. Bull. Math. Biol. 59, 551–567 (1997)

    Article  MATH  Google Scholar 

  13. Sun, G.-Q., Zhang, G., Jin, Z.: Dynamic behavior of a discrete modified Ricker–Beverton–Holt model. Comput. Math. Appl. 57, 1400–1412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal., Real World Appl. 12, 403–417 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, N., Chen, X.X.: Permanence of a discrete multispecies Lotka–Volterra competition predator–prey system with delays. Nonlinear Anal., Real World Appl. 9, 2185–2195 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xia, Y., Cao, J., Lin, M.: Discrete-time analogues of predator–prey models with monotonic or nonmonotonic functional responses. Nonlinear Anal., Real World Appl. 8, 1079–1095 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghaziani, R.K., Govaerts, W., Sonck, C.: Resonance and bifurcation in a discrete-time predator–prey system with Holling functional response. Nonlinear Anal., Real World Appl. 13, 1451–1465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gaines, R.E., Mawhin, R.M.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    MATH  Google Scholar 

  19. Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio-dependent predator–prey system. Math. Comput. Model. 35, 951–961 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agarwal, R.P.: Difference Equations and Inequalities: Theory, Method and Applications Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, New York (2000)

    Google Scholar 

  21. Wang, W.D., Lu, Z.Y.: Global stability of discrete models of Lotka–Volterra type. Nonlinear Anal. 35, 1019–1030 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  23. Li, L., Jin, Z.: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    Article  MathSciNet  Google Scholar 

  24. Sun, G.-Q., Jin, Z., Li, L., Li, B.-L.: Self-organized wave pattern in a predator–prey model. Nonlinear Dyn. 60, 265–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, X.-Q., Sun, G.-Q., Jin, Z.: Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response. Phys. Rev. E 85, 021924 (2012)

    Article  Google Scholar 

  26. Sun, G.-Q., Jin, Z., Li, L., Haque, M., Li, B.-L.: Spatial patterns of a predator–prey model with cross diffusion. Nonlinear Dyn. 69, 1631–1638 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the National Natural Science Foundation of China under Grants (11171314 and 11147015), Natural Science Foundation of Shan’Xi Province Grant No. 2012021002-1, and the Program for Basic Research (2010011007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Wang, ZJ. Global stability of periodic solutions for a discrete predator–prey system with functional response. Nonlinear Dyn 72, 507–516 (2013). https://doi.org/10.1007/s11071-012-0730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-012-0730-6

Keywords

Navigation