Skip to main content
Log in

Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper we analyze the vibrations of nonlinear structures by means of the novel approach of isogeometric finite elements. The fundamental idea of isogeometric finite elements is to apply the same functions, namely B-Splines and NURBS (Non-Uniform Rational B-Splines), for describing the geometry and for representing the numerical solution. In case of linear vibrational analysis, this approach has already been shown to possess substantial advantages over classical finite elements, and we extend it here to a nonlinear framework based on the harmonic balance principle. As application, the straight nonlinear Euler–Bernoulli beam is used, and overall, it is demonstrated that isogeometric finite elements with B-Splines in combination with the harmonic balance method are a powerful means for the analysis of nonlinear structural vibrations. In particular, the smoother k-method provides higher accuracy than the p-method for isogeometric nonlinear vibration analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ginsberg, J.H.: Mechanical and Structural Vibrations: Theory and Applications. Wiley, New York (2001)

    Google Scholar 

  2. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, Mineola, New York (2000)

    MATH  Google Scholar 

  3. Farin, G.E.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  4. Piegl, L., Tiller, W.: The NURBS Book. Springer, London (1995)

    Book  MATH  Google Scholar 

  5. Rogers, D.F.: An Introduction to NURBS with Historical Perspective. Academic Press, San Diego (2001)

    Google Scholar 

  6. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: cad, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39-41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  8. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., Zhang, Y.: Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput. Mech. 43(1), 3–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cottrell, J.A., Reali, A., Bazilevs, Y., Hughes, T.J.R.: Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5257–5296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Vuong, A.-V., Heinrich, C., Simeon, B.: Isogat: a 2d tutorial Matlab code for isogeometric analysis. Comput. Aided Geom. Des. 27, 644–655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ziani, M., Duvigneau, R., Dörfel, M.: On the role played by NURBS weights in isogeometric structural shape optimization. In: International Conference on Inverse Problems, Control and Shape Optimization, Cartagena, Spain, April 2010

    Google Scholar 

  12. Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept volume parameterization for isogeometric analysis. In: Mathematics of Surfaces XIII. Lecture Notes in Computer Science, vol. 5654, pp. 19–44. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  13. Bazilevs, Y., Beirão de Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16(7), 1031–1090 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dörfel, M., Jüttler, B., Simeon, B.: Adaptive isogeometric analysis by local h-refinement with t-splines. Comput. Methods Appl. Mech. Eng. 199(5–8), 264–275 (2010)

    Article  MATH  Google Scholar 

  15. Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vuong, A.-V., Gianelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200(49–52), 3554–3567 (2011)

    Article  MATH  Google Scholar 

  18. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, New York (2009)

    Book  Google Scholar 

  19. Ferri, A.A.: On the equivalence of the incremental harmonic balance method and the harmonic balance-Newton–Raphson method. J. Appl. Mech. 53(2), 455–457 (1986)

    Article  MathSciNet  Google Scholar 

  20. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical Computational, and Experimental Methods. Wiley Series in Nonlinear Science. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  21. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley Classics Library. Wiley, New York (1995)

    Book  Google Scholar 

  22. Szemplinska-Stupnicka, W.: The Behaviour of Nonlinear Vibrating Systems. Kluwer Academic, Dordrecht, Boston, London (1990)

    Book  MATH  Google Scholar 

  23. Wagg, D., Neild, S.: Nonlinear Vibration with Control: For Flexible and Adaptive Structures. Solid Mechanics and Its Applications. Springer, Berlin (2010)

    Book  Google Scholar 

  24. Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics, Bristol (2001)

    Book  Google Scholar 

  25. Lewandowski, R.: Non-linear, steady-state vibration of structures by harmonic balance/finite element method. Comput. Struct. 44(1–2), 287–296 (1992)

    Article  MATH  Google Scholar 

  26. Lewandowski, R.: Computational formulation for periodic vibration of geometrically nonlinear structures, part 1: theoretical background; part 2: numerical strategy and examples. Int. J. Solids Struct. 34(15), 1925–1964 (1997)

    Article  MATH  Google Scholar 

  27. Ribeiro, P., Petyt, M.: Non-linear vibration of beams with internal resonance by the hierarchical finite element method. J. Sound Vib. 224(15), 591–624 (1999)

    Article  Google Scholar 

  28. Ribeiro, P.: Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames. J. Sound Vib. 246(2), 225–244 (2001)

    Article  MathSciNet  Google Scholar 

  29. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82(17–19), 1413–1423 (2004)

    Article  Google Scholar 

  30. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  31. Chen, S.H., Cheung, Y.K., Xing, H.X.: Nonlinear vibration of plane structures by finite element and incremental harmonic balance method. Nonlinear Dyn. 26, 87–104 (2001)

    Article  MATH  Google Scholar 

  32. Reddy, J.N.: An Introduction to Nonlinear Finite Elements. Oxford University Press, New York (2004)

    Book  Google Scholar 

  33. Gross, D., Hauger, W., Wriggers, P.: Technische Mechanik 4—Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden, 7. auflage edition. Springer, Berlin Heidelberg (2009)

    Google Scholar 

  34. Bobylev, N.A., Burman, Y.M., Korovin, S.K.: Approximation Procedures in Nonlinear Oscillation Theory. De Gruyter Series in Nonlinear Analysis and Applications. W. de Gruyer, Berlin (1994)

    Book  MATH  Google Scholar 

  35. Schneider, M., Wever, U., Zheng, Q.: Parallel harmonic balance. In: VLSI 93, Proceedings of the IFIP TC10/WG 10.5 International Conference on Very Large Scale Integration, Grenoble, France, 7–10 September, 1993, pp. 251–260 (1993)

    Google Scholar 

  36. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Colorado State University, Fort Collins (1990)

    Book  Google Scholar 

  37. Haisler, W.E., Stricklin, J.A., Key, J.E.: Displacement incrementation in non-linear structural analysis by the self-correcting method. Int. J. Numer. Methods Eng. 11(1), 3–10 (1977)

    Article  MATH  Google Scholar 

  38. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

    MATH  Google Scholar 

  39. Oden, J.T.: Finite Elements of Nonlinear Continua. Dover Civil and Mechanical Engineering Series. Dover, New York (2006)

    MATH  Google Scholar 

  40. TERRIFIC: Towards enhanced integration of design and production in the factory of the future through isogeometric technologies. EU Project FP7, FoF-ICT-2011.7.4

Download references

Acknowledgements

The authors were supported by the 7th Framework Programme of the European Union, project TERRIFIC (FP7-2011-NMP-ICT-FoF 284981) [40].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Weeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weeger, O., Wever, U. & Simeon, B. Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations. Nonlinear Dyn 72, 813–835 (2013). https://doi.org/10.1007/s11071-013-0755-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0755-5

Keywords

Navigation