Skip to main content
Log in

Development of a family of explicit algorithms for structural dynamics with unconditional stability

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new family of explicit integration algorithms is developed based on discrete control theory for solving the dynamic equations of motion. The proposed algorithms are explicit for both displacement and velocity and require no factorisation of the damping matrix and the stiffness matrix. Therefore, for a system with nonlinear damping and stiffness, the proposed algorithms are more efficient than the common explicit algorithms that provide only explicit displacement. Accuracy and stability properties of the proposed algorithms are analysed theoretically and verified numerically. Certain subfamilies are found to be unconditionally stable for any system state (linear elastic, stiffness softening or stiffness hardening) that may occur in earthquake engineering of a practical structure. With dual explicit expression and excellent stability property, the proposed family of algorithms can potentially solve complicated nonlinear dynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54(4), 283–296 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85(3), 67–94 (1959)

    Google Scholar 

  3. Wilson, E.L.: A computer program for the dynamic stress analysis of underground structures. Report UC SESM 68–1. University California, Berkeley (1968)

  4. Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. D 5(3), 283–292 (1977)

    Article  Google Scholar 

  5. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15(10), 1562–1566 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Smolinski, P.: Subcycling integration with non-integer time steps for structural dynamics problems. Comput. Struct. 59(2), 273–281 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fung, T.: Higher-order accurate time-step-integration algorithms by post-integration techniques. Int. J. Numer. Methods Eng. 53(5), 1175–1193 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chang, S.Y.: Explicit pseudodynamic algorithm with unconditional stability. J. Eng. Mech. ASCE 128, 935 (2002)

    Article  Google Scholar 

  9. Chang, S.Y.: An explicit method with improved stability property. Int. J. Numer. Methods Eng. 77(8), 1100–1120 (2009)

    Article  MATH  Google Scholar 

  10. Chang, S.Y., Yang, Y.S., Hsu, C.W.: A family of explicit algorithms for general pseudodynamic testing. Earthq. Eng. Eng. Vib. 10(1), 51–64 (2011)

    Article  Google Scholar 

  11. Chen, C., Ricles, J.M.: Development of direct integration algorithms for structural dynamics using discrete control theory. J. Eng. Mech. ASCE 134, 676 (2008)

    Article  Google Scholar 

  12. Dong, X.M., Yu, M., Liao, C.R., Chen, W.M.: Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dyn. 59(3), 433–453 (2010)

    Article  MATH  Google Scholar 

  13. Guo, P., Lang, Z., Peng, Z.: Analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Nonlinear Dyn. 67(4), 2671–2687 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, Upper Saddle River (1987)

    MATH  Google Scholar 

  15. Wang, J.T., Zhang, C.H., Du, X.L.: An explicit integration scheme for solving dynamic problems of solid and porous media. J. Earthq. Eng. 12(2), 293–311 (2008)

    Article  Google Scholar 

  16. Rezaiee, Pajand M., Sarafrazi, S.R., Hashemian, M.: Improving stability domains of the implicit higher order accuracy method. Int. J. Numer. Methods Eng. 88(9), 880–896 (2011)

    Article  MATH  Google Scholar 

  17. Franklin, G.F., Powell, J.D., Emami Naeini, A.: Feedback Control of Dynamic Systems. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  18. Ramirez, M.R.: The numerical transfer function for time integration analysis. Proceedings of New Methods in Transient Analysis, ASME, New York, PVP, vol. 246, pp. 79–85 (1992)

  19. Mugan, A., Hulbert, G.: Frequency-domain analysis of time-integration methods for semidiscrete finite element equations, part I: parabolic problems. Int. J. Numer. Methods Eng. 51(3), 333–350 (2001)

    Article  MATH  Google Scholar 

  20. Mugan, A., Hulbert, G.M.: Frequency-domain analysis of time-integration methods for semidiscrete finite element equations, part II: hyperbolic and parabolic–hyperbolic problems. Int. J. Numer. Methods Eng. 51(3), 351–376 (2001)

    Article  MATH  Google Scholar 

  21. Chen, C., Ricles, J.M.: Stability analysis of direct integration algorithms applied to nonlinear structural dynamics. J. Eng. Mech. ASCE 134, 703 (2008)

    Google Scholar 

  22. Chen, C., Ricles, J.M.: Stability analysis of direct integration algorithms applied to MDOF nonlinear structural dynamics. J. Eng. Mech. ASCE 136, 485 (2010)

    Article  Google Scholar 

  23. Ogata, K.: Discrete-Time Control Systems. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  24. Chopra, A.K., Naeim, F.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, Upper Saddle River (2007)

    Google Scholar 

  25. Bathe, K.J., Wilson, E.L.: Numerical Methods in Finite Element Analysis. Prentice Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  26. MathWorks, Inc.: Matlab, 2006b. MathWorks, Inc., Natick, MA (2006)

    Google Scholar 

  27. Wereley, N.M., Pang, L., Kamath, G.M.: Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J. Intell. Mater. Syst. Struct. 9(8), 642–649 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (Nos. 51179093, 91215301 and 41274106) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130002110032). The authors express their sincerest gratitude for these supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, Y., Wang, JT., Jin, F. et al. Development of a family of explicit algorithms for structural dynamics with unconditional stability. Nonlinear Dyn 77, 1157–1170 (2014). https://doi.org/10.1007/s11071-014-1368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1368-3

Keywords

Navigation