Skip to main content
Log in

Limit cycle bifurcations in a kind of perturbed Liénard system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the number of limit cycles of a class of quartic Liénard systems with polynomial perturbations of degree n, \(20\le n\le 24\). Let H(n, 4) denote the maximal number of limit cycles of Liénard system \({\dot{x}}=y,\, {\dot{y}}=-g(x)-\varepsilon f(x)y\), where \(\varepsilon \ge 0\) is a small parameter, f(x), g(x) are polynomials in x and \(\deg f=n\), \(\deg g=m\). We obtain five better lower bounds of H(n, 4) for \(20\le n\le 24\), which greatly improve the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hilbert, D.: Mathematical problems. M. Newton. Transl. Bull. Am. Math. Soc. 8, 437–479 (1902). Reprinted, Bull. Am. Math. Soc. (N.S.) 37, 407–436(2000)

  2. Blows, T.R., Lloyd, N.G.: The number of small-amplitude limit cycles of Liénard equations. Math. Proc. Camb. Philos. Soc. 95, 359–366 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Han, M.: Liapunov constants and Hopf cyclicity of Lineard systems. Ann. Differ. Equ. 15(2), 113–126 (1999)

    Google Scholar 

  4. Christopher, C.J., Lynch, S.: Small-amplitude limit cycle bifurcations for Liénard systems with quadratic or cubic damping or restoring forces. Nonlinearity 12, 1099–1112 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, J.M., Han, M.A., Romanovski, V.G.: Limit cycle bifurcations of some Liénard systems. J. Math. Anal. Appl. 366, 242–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yu, P., Han, M.: Limit cycles in generalized Liénard systems. Chaos Solitons Fractals 30(5), 1048–1068 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, M., Yan, H., Yang, J., Lhotka, C.: On the number of limit cycles of some Liénard systems. Can. Appl. Math. Q. 17(1), 61–83 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Yang, J., Han, M.: Limit cycle bifurcations of some Lienard systems with a cuspidal loop and a homoclinic loop. Chaos Solitons Fractals 44, 269–289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, M., Romanovski, V.: On the number of limit cycles of polynomial Lienard systems. Nonlinear Anal. Real World Appl. 14, 1655–1668 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, J., Sun, X.: Bifurcation of limit cycles for some Lienard systems with a nilpotent singular point. Int. J. Bifurc. Chaos 25(5), 1550066 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dumortier, F., Li, C.: Perturbation from an elliptic Hamiltonian of degree four—IV figure eight-loop. J. Differ. Equ. 188, 512–554 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavrilov, L.: Petrov modules and zeros of Abelian integrals. Bull. Sci. Math. 122, 571–584 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lloyd, N., Pearson, J.: Symmetry in planar dynamical systems. J. Symb. Comput. 33, 357–366 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, J.: On the limit cycles of a kind of Lienard system with a nilpotent center under perturbations. J. Appl. Anal. Comput. 2(3), 325–339 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Xiao, D.: Bifurcations on a five-parameter family of planar vector field. J. Dyn. Differ. Equ. 20(4), 961–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Han, M., Yang, J., Yu, P.: Hopf bifurcations for near-Hamiltonian systems. Int. J. Bifurc. Chaos 19(12), 4117–4130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, M., Wang, Z., Zang, H.: Limit cycles by Hopf and homoclinic bifurcations for near-Hamiltonian systems. Chin. J. Contemp. Math. 28, 423–434 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)

    MathSciNet  Google Scholar 

  19. Han, M., Yang, J., Tarta, A., Gao, Y.: Limit cycles near homoclinic and heteroclinic loops. J. Dyn. Differ. Equ. 20, 923–944 (2008)

  20. Yang, J., Han, M.: Limit cycles near a double homoclinic loop. Ann. Differ. Equ. 23(4), 536–545 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Han, M.: On Hopf cyclicity of planar systems. J. Math. Anal. Appl. 245, 404–422 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roussarie, R.: On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields. Bol. Soc. Bras. Mat. 17, 67–101 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (11571090, 11101118), Natural Science Foundation of Hebei Province (A2012205074) and Science Foundation of Hebei Normal University (L2011B01). The authors would like to thank the editor and reviewers for their valuable comments and suggestions, which greatly improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Yang.

Appendix

Appendix

  1. 1.

    \(\delta _{20}^*=(a_0^*,\dots ,a_3^*,0,a_5^*,\dots ,a_8^*,0,a_{10}^*,\dots ,a_{13}^*,0,\) \(a_{15}^*,\dots ,a_{18}^*,0,a_{20})\), where

    $$\begin{aligned}&a_0^*=0,\\&a_1^*=- 21318.0604324328412532274239106\,a_{{20}},\\&a_2^*= 114011.145914969967385579906941\,a_{{20}},\\&a_3^*=- 173549.546643392826627273550805\,a_{{20}},\\&a_5^*= 326771.242306230057428053157970\,a_{{20}},\\&a_6^*=- 608489.921888034105185035441300\,a_{{20}},\\&a_7^*= 616755.444203830151182066142852\,a_{{20}},\\&a_8^*=- 301315.973806968855186022911247\,a_{{20}},\\&a_{10}^*=98303.7871028734698384939190631\,a_{{20}},\\&a_{11}^*=- 85265.2049634603586986959830478\,a_{{20}},\\&a_{12}^*= 46373.4799399055285103784992794\,a_{{20}},\\&a_{13}^*=- 13300.2603261692754459843728864\,a_{{20}},\\&a_{15}^*=1648.57325620460711482565821829\,a_{{20}},\\&a_{16}^*=- 867.352241550502709346464586178\,a_{{20}},\\&a_{17}^*=291.646481252879500372907979838\,a_{{20}},\\&a_{18}^*=- 49.9989032578958541840445211182\,a_{{20}}. \end{aligned}$$
  2. 2.

    \(\delta _{21}^*=(a_0^*,\dots ,a_3^*,0,a_5^*,\dots ,a_8^*,0,a_{10}^*,\dots ,a_{13}^*,0,\) \(a_{15}^*,\dots ,a_{18}^*,0, a_{20}^*,a_{21})\), where

    $$\begin{aligned}&a_0^*=0,\\&a_1^*=162150.853297587914262470460314\,a_{{21}},\\&a_2^*= - 867199.183794196425663602226662\,a_{{21}},\\&a_3^*=1320064.13282112808169539942405\,a_{{21}},\\&a_5^*=- 2485509.30045630063283495496896\,a_{{21}},\\&a_6^*=4628340.19202892555340450692826\,a_{{21}},\\&a_7^*= - 4691227.90018677121080080796830\,a_{{21}},\\&a_8^*= 2291938.49131512648517110662970\,a_{{21}},\\&a_{10}^*=- 747987.385428451731464214392635\,a_{{21}},\\&a_{11}^*=649241.426175244298933278879690\,a_{{21}},\\&a_{12}^*= - 353650.664563661267614856552788\,a_{{21}},\\&a_{13}^*=101796.365731270534398572832549\,a_{{21}},\\&a_{15}^*=- 12998.4349348140403957017396799\,a_{{21}},\\&a_{16}^*= 7084.00410184684354502096733874\,a_{{21}},\\&a_{17}^*=- 2481.48063426816712649288457994\,a_{{21}},\\&a_{18}^*=450.690680282000573788877176248\,a_{{21}},\\&a_{20}^*=- 12.8061529482360835142654870435\,a_{{21}}. \end{aligned}$$
  3. 3.

    \(\delta _{22}^*=(a_0^*,\dots ,a_3^*,0,a_5^*,\dots ,a_8^*,0,a_{10}^*,\dots ,\) \(a_{13}^*,0,a_{15}^*,\dots ,a_{18}^*,0, a_{20}^*,a_{21}^*,a_{22})\), where

    $$\begin{aligned}&a_0^*=0,\\&a_1^*=- 831866.271572912296896715258323\,a_{{22}},\\&a_2^*=4448905.06003121615176894304027\,a_{{22}},\\&a_3^*=- 6772192.72236487595894435846335\,a_{{22}},\\&a_5^*=12751159.2076311909764969835906\,a_{{22}},\\&a_6^*=- 23744308.7739395490436273790461\,a_{{22}},\\&a_7^*= 24066931.1513193240610400762475\,a_{{22}},\\&a_8^*= - 11758092.7077670827587730931060\,a_{{22}},\\&a_{10}^*= 3837305.12070261853266974367342\,a_{{22}},\\&a_{11}^*=- 3330754.12526237265404871436386\,a_{{22}},\\&a_{12}^*= 1814444.44549217981744219235528\,a_{{22}},\\&a_{13}^*=- 522451.805988802594961667325535\,a_{{22}},\\&a_{15}^*=67097.4221011585639705155696440\,a_{{22}},\\&a_{16}^*= - 36970.6591133074643673558769376\,a_{{22}},\\&a_{17}^*= 13197.9382609075255838813683705\,a_{{22}},\\&a_{18}^*=- 2480.84116329836201760544413679\,a_{{22}},\\&a_{20}^*= 90.4224190528554906586144065030\,a_{{22}},\\&a_{21}^*=- 13.8607854473508261055753021643\,a_{{22}}. \end{aligned}$$
  4. 4.

    \(\delta _{23}^*=(a_0^*,\dots ,a_3^*,0,a_5^*,\dots ,a_8^*,0,a_{10}^*,\dots ,\) \(a_{13}^*,0,a_{15}^*,\dots ,a_{18}^*,0, a_{20}^*,a_{21}^*,a_{22}^*,a_{23})\), where

    $$\begin{aligned}&a_0^*=0,\\&a_1^*=1865551.24483979783699885343007\,a_{{23}},\\&a_2^*= - 9977156.97398877850734186811728\,a_{{23}},\\&a_3^*=15187384.0761313893129823160543\,a_{{23}},\\&a_5^*=- 28595871.1220563970465268861918\,a_{{23}},\\&a_6^*=53249209.2730054201341195484786\,a_{{23}},\\&a_7^*= - 53972708.8817114733396310295925\,a_{{23}},\\&a_8^*= 26368770.6120695495321288948130\,a_{{23}},\\&a_{10}^*=- 8605435.78480191818093671730375\,a_{{23}},\\&a_{11}^*= 7469357.21410967127392641705277\,a_{{23}},\\&a_{12}^*= - 4069068.71856143046166772866878\,a_{{23}},\\&a_{13}^*=1171905.48533885523779570202556\,a_{{23}},\\&a_{15}^*=- 151283.904982231202211905962712\,a_{{23}},\\&a_{16}^*= 84291.3850650009097699069459751\,a_{{23}},\\&a_{17}^*=- 30734.9757997159890829386767773\,a_{{23}},\\&a_{18}^*=6023.05278893108867666421038019\,a_{{23}},\\&a_{20}^*=- 298.959012037341821283616853025\,a_{{23}},\\&a_{21}^*=78.9599811490577454656732700005\,a_{{23}},\\&a_{22}^*=- 12.9824157823149234105535552428\,a_{{23}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhou, L. Limit cycle bifurcations in a kind of perturbed Liénard system. Nonlinear Dyn 85, 1695–1704 (2016). https://doi.org/10.1007/s11071-016-2787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2787-0

Keywords

Navigation